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Project Summary

Over the past four years the Computational Mechanics Company, Inc. has been the principal

investigator into the development of a new class of computational methods for modeling

hypersonic viscous flows in two- and three-dimensional domains. The ultimate goal of this

project is to provide NASA with a highly accurate computational tool for resolving fine

scale flow features typical of shock wave interactions and strong viscous interaction regions

in hypersonic flows. Toward this end, a research and development effort was put forth in

the area of adaptive computational finite element methods for high speed flows based on

unstructured mesh concepts and employing local estimates of the solution error to optimally

change the computational grid to minimize the numerical error. The approach developed

here, which combines h-adaptive and anisotropic p-enrichment mesh modification procedures,

has proven for certain classes of problems to provide exponential rates of convergence of the

solution using possibly an order of magnitude fewer degrees of freedom than conventional

methods while obtaining the same level of computational accuracy.

During the first phase of this project (years 1-3), work was focused on a number of

research topics which were crucial to the success of h-p adaptive finite element methods for

hypersonic flows. Many of these issues were resolved and the results are presented again in

detail in the body of this report for completeness. Summarizing some of the more significant

developments of this first phase of the effort:

• The development of the first h-p finite element data structure for quadrilateral and
hexahedral elements.

• The development of an h-p adaptive package that includes

m A local error estimation capability for driving the adaptive strategy.

A spectral enrichment and h-refinement methodology to change the structure of

the computational grid.

The formulation of a generalized methodology for handling nodal point constraints

for higher order polynomials. (Note that this difficulty does not occur with either

h-refinement or p-enrichment individually.)

• The development of an algorithm for manual anisotropic enrichment of both two-

dimensional and three-dimensional elements.

• The formulation and implementation of a version of a preconditioned block Jacobi-

GMRES method for higher order spectral elements.



• The formulation and implementationof a one-stepTaylor-Galerkin solution algorithm
for h-p methods.

The formulation and implementation of an implicit two-step Taylor-Galerkin solution

algorithm which solves first an Euler step followed by a viscous step.

An investigation of artificial dissipation mechanisms appropriate for h-p adaptive com-

putational methods with possibly highly distorted elements or elements with high as-

pect ratios.

In addition to these efforts on research-oriented topics, a user friendly, graphics oriented,

interface for the two- and three-dimensional codes was developed. This interface includes

both a batch and interactive option and full graphics capabilities for displaying the solu-

tions, extracted quantities, and plots of the local estimates of the computational error. A

simple grid file interface was also developed to read in neutral grid files generated either

by the GAMMA2D or GAMMA3D codes, developed in-house at COMCO, or by PATRAN.

(The formats necessary for PATRAN and the neutral file interface are discussed in the grid

generation section of the user manual.)

The second phase of this effort, conducted over the last 12 months, has focused on two

special research and development topics which are in general related to the performance of

the flow solver. These topics include:

• The development of implicit/explicit computational methods (in two dimensions) for

integrating the Navier Stokes equations forward in time.

• The development of computational methodologies and algorithms which provide for

automated directional p-enrichment of the computational mesh.

A third topic on which we dedicated considerable computer resources was a continued

investigation of artificial dissipation mechanism for h-p adaptive computational methods.

In particular, numerous test cases were run for the Mach 14 Holden problem using various

artificial mechanism to determine an appropriate model for capturing the recirculation bubble

and other fine features of the solution.

All of the capabilities and options developed during the first and second phases of the

effort have been implemented and/or tested in a two-dimensional and/or a three-dimensional

finite element code. Using these codes a number of test cases have been solved to verify the

functionality of the software. These benchmark cases include flow past a blunt body with

an incident shock to produce a Type IV (Edney) interaction, a Holden problem with inflow

Mach number 14, and a rearward facing step with a strong expansion. Experimental data
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on each of these benchmark problems is available and comparisons with this data are made

throughout the results section of this report.



1 Introduction

The commitment to develop the National Aero-Space Plane and Maneuvering Reentry Ve-

hicles has generated resurgent interest in the technology required to design structures for

hypersonic flight. As these vehicles cruise, accelerate and/or decelerate in the atmosphere,

highly complex patterns of shock wave interactions and shock wave boundary layer inter-

actions develop which produce severe local pressures and extreme local heating rates. To

provide adequate safety factors in the thermal-structural designs an accurate determination

of the aerothermal loads, especially in the local areas of strong shock interactions and strong

viscous interactions such as interacting shock waves on a leading edge, shock/boundary layer

interactions, corner flows, etc., is required. In general, ground based test facilities can pro-

vide only limited data for the expected flight conditions, at a considerable cost, and thus

designers must depend heavily on analytically predicted aerothermal loads. The analyti-

cal methodologies for these predictions must be accurate (to within some predetermined

measure), robust, computationally economical, and geometry independent.

For a designer, the prediction of aerothermal loads of hypersonic structures is one of the

most challenging problems in computational fluid dynamics. It requires flow analysis and

shock prediction at very high Mach numbers, as well as a realistic calculation of aerother-

mal loads. These tasks required, in general, advanced computational strategies, extremely

accurate discretization techniques, and powerful postprocessing capabilities.

During the first two phases of this project we have developed, at the Computational

Mechanics Company, an implicit/explicit, anisotropic h-p finite element methodology for

the analysis of high speed flows and the prediction of aerothermal loads. The basic idea

of the h-p version of the finite element method is to combine local mesh refinement (an

h-method) with anisotropic polynomial enrichment (a p-method) in order to achieve con-

vergence rates not attainable with fixed mesh methods or with any of the above methods

applied separately. In practical terms, the h-p method means maximum numerical accuracy

at a minimal computational cost.

The remainder of this report summarizes the results of the first and second phases of a

four year research and development effort oriented toward the resolution of several theoretical

and computational issues related to the above problems. In Section 2 the basic formulation

of the Navier-Stokes equations which governs the compressible viscous flow is presented.

This is followed by a detailed discussion of a general family of implicit Taylor Galerkin algo-

rithms for solving the compressible flow equations, and a review of the numerical boundary

conditions associated with the algorithms. The final part of this section provides a brief

discussion about artificial dissipation mechanisms which may be more appropriate for highly

distorted elements or elements with high aspect ratios. The Taylor-Galerkin formulation
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and the general boundary condition treatment presented in Section 2 is excerpted from our

published work on these results (e.g. [8, 10, 31]). The next section, Section 3, provides a

detailed review of the h-p finite element methodology. Included in this review is a discussion

of the data structure, hierarchical shape functions, constrained approximation, and assump-

tions and restrictions which have been incorporated into the h-p formulation. The work

reported in Sections 3.3-3.11 is based on extensions of the general h-p adaptivity methods of

Oden, Demkowicz, and Rachowicz, originally published in 1989 (see [9, 25]) and expanded

and generalized to apply to thermomechanical load predictions in this project. Section 4

follows with a discussion of the adaptive strategy which is used in conjunction with the

mesh modification algorithms. Here the error estimates used to drive the adaptive package

are outlined and the procedure for adapting the computational mesh is presented. Section

5 follows with a detailed discussion of the implicit/explicit methodologies that have been

implemented within the context of the two-dimensional code. In particular, in this section

we review the basic concepts associated with using implicit/explicit methods and how one

would select implicit end explicits zones within the computational domain. This section con-

cludes with a brief overview of other computational procedures also required to efficiently

implement an implicit/explicit methodology.

The contents of this report includes a summary of the efforts completed during both the

first and second phases of the development effort. During the second phase of the project,

our efforts have focused on implicit/explicit methods, directional enrichment techniques and

algorithms, and optimal artificial dissipation mechanisms. The details of this effort are

provided in sections 2.2, 4.2, 5, and 7. The other basic sections are essentially the same as

in previous reports except for various corrections.

The next section, Section 6, presents some non-standard algorithms used in the element

calculations and the postprocessing module. This is followed by Section 7, which presents

the results of the numerical test cases that have been run over the course of this project. This

includes both simple test problems used for verification purposes as well as the benchmark

problems supplied by NASA-Langley. The final section provides a brief discussion of some

possible directions for future research and development in the area of h-p adaptive methods

for hypersonic flows.
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2 Formulation of the

merical Algorithms

Governing Equations and Nu-

This section provides a summary of the basic field equations and numerical algorithms that

have been used to model the complex flow phenomena that is encountered in hypersonic

flight conditions. We begin this section with a standard review of the basic field equations

of compressible gas dynamics which are expressed in conservation form. These equations

are then nondimensionalized in the usual fashion (see reference [1]) using the free stream

density, velocity, Mach number, Reynolds number, etc. This procedure results in a system of

evolution equations, for a set of nondimensionalized conservation variables, which assume es-

sentially the same form as the original governing equations but with new material constants.

The next two sections present the details of two algorithms for integrating the Navier-Stokes

equations forward in time. The first algorithm is a one-step implicit/explicit method which

is based on the genera] family of Tay]or-GaIerkin method with several parameters controlling

the actual implicitness of the scheme. The second method is a two-step method which sepa-

rates the EuIer fluxes from the viscous contributions, resulting in an inviscid convection step

and a viscous diffusion step. The next subsection summarizes the various classes of bound-

ary conditions that arise fl'om these two approaches and the final section discusses artificial

dissipation mechanisms appropriate for h-p adaptive methods. (As a matter of notational

simplicity all of the formulations and algorithms presented in this section are limited to the

two-dimensional case.)

2.1 Notation and Formulation of the Equations

The compressible viscous flow of a calorically perfect gas is governed by the Navier-Stokes

equations which may be conveniently written as

v, + r[(v),, = Fy(U),,

where U is the vector of conservation variables defined by

(2.1)

U = {p,m,,m_,e} T (2.2)

and F c(U) and F_'(U) are the inviscid and viscous fluxes, respectively. The indices i in (2.1)

refer to the axis of a Cartesian coordinate system, a comma denotes partial differentiation,

and the summation convention is applied. The Eulerian fluxes Fci(u) are defined as



_ mlrn2 ___I T
r._ + p, _, (_+ p)_r'_(u) = .,,, p p

( rnlm2 m2_ +p,(e+p)__)TF_c(U) = m_, P , P

(2.3)

Here p is the mass density, mi = pui are the momentum components (with ui the velocity

vector components), e is the total energy per unit volume, and p is the thermodynamic

pressure. Under the assumption that the fluid behaves as a perfect gas, the constitutive

equation relating the pressure to the internal energy is given by

p= (-r-1)_

where t is the internal energy per unit volume

(2.4)

1 2
(2.5)

and 7 is the ratio of specific heats

% (2.6),-), -- n
Cv

In this expression Cv is the specific heat at constant pressure and C_ is the specific heat at

constant volume.

The viscous fluxes .F_'(U) are defined by

F_a'(U) = (O, rH,ra_,r, juj + q,) (2.7)

F_" (U) = (0, 7"21,7"22, r2jUj + q2)

with the viscous stresses "rij related to the velocity gradient through the usual constitutive

relation for a Newtonian fluid

r 0 = #(uij + u.i,i) + Auk,k6ij -

and the heat flux is defined by Fourier's law

(2.8)

qi = rT, i (2.9)

Here/_ and )_ are the dynamic viscosity and second viscosity coefficient, respectively, _0 is

the Kronecker delta, T is the temperature, and t¢ is the heat conduction coefficient.



In addition to the quantities definedabove,wealsointroduce the Reynolds numberReL

and the Prandtl number Pr

pVL
ReL - (2.10)

%t_A (2.11)
t_

where L is the referential or characteristic length. These quantities will be used in the next

section where a nondimensionalized form of the governing equations is discussed.

As a final note, we will assume throughout this report that the Stokes relation is in effect

3A + 2//= 0

and Southerland's law relating the temperature to the dynamic viscosity holds

T3/2

la = Ca
T+ C_

where C1 and C2 are constants for a given gas.

(2.12)

(2.13)

2.1.1 Nondimensional Form of the Navier-Stokes Equations

Following the procedure outlined by Anderson [1] we introduce the following scaling param-

eters

Po_ - free stream density

Vo. - free stream velocity

To¢ - free stream temperature

/_¢¢ - free stream dynamic viscosity

L - referential or characteristic length

Using these scaling parameters, a number of nondimensional quantities may be defined



Xi

L

L

/too

P
p* --

Poo

(2.14)

P
].)"

poot_

T
Zl _-- p

Too

l

l" - pool'_

where the nondimensional variables are denoted with an asterisk, t" is the nondimen-

sionalized time, and x_ are the nondimensionalized coordinates. Applying this nondimen-

sionalization to the compressible Navier-Stokes equations, one obtains a set of equations

which assume essentially the same form as the original formulas provided that new material

constants are defined as follows:

= ReL' ReL
(2.15)

_,_ = [")("t- 1)M_] -x

In equation (2.15), Moo is the free stream Mach number whichis given by the relation

.M_ = Voo (2.16)

@_(_/ - 1)c,_T_

Throughout this report, asterisks and tildes are omitted and it is understood that the nondi-

mensionalized forms of the governing equations are in use.

This section is concluded with a list of some nondimensional quantities of interest:
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• pressurecoefficient

• skin friction coefficient

P - Po_ 1

C, = 0.5p_l_ - 2(p" _,M£) (2.17)

r, =2r_ (2.18)
cj = o.5p=y 

where the nondimensional shear stress r2 is calculated using the nondimensional form

of (2.8) (with/_ and A replacing/_ and A, respectively)

• heat flux coefficient

where

Ch - q = 2q" (2.19)

q = qini and q" = q, ni (2.20)

and where n = (hi) denotes a unit normal vector. The nondimensional heat flux

vector q, is evaluated using formula (2.9), the nondimensional temperature T* and the

coefficient of conductivity

k - 3c_/_ (2.21)
Pr

2.2 Taylor-Galerkin Algorithms

This section presents two Taylor-Galerkin algorithms for integrating the Navier-Stokes equa-

tions forward in time. The first algorithm is a implicit/explicit one-step approach where all

of the components of the solution are handled simultaneously. The second approach is a

rather unique two-step approach whereby the Navier-Stokes equations have been split into a

convective part and a diffusive part and are subsequently combined to advance the solution

in time.
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2.2.1 One-Step Taylor-Galerkin Algorithm

A general family of implicit Taylor-Galerkin methods is summarized in this section. These

methods can be made explicit or implicit by the appropriate selection of implicit parameters

(see below). The details concerning the theoretical formulation can be found in [27] and

references therein.

Given a domain Q C _N the compressible Navier-Stokes equations are characterized by

a system of conservation laws of the form

U,t + F c. = F .v.
111 1_$

accompanied by an initial condition

u(_,0) = u0(_)

and appropriate boundary conditions.

z • fl, t > 0 (2.22)

x • n (2.23)

Second-Order Taylor Expansion in Time

As a starting point, let us assume that the solution U n at time step t n is known and the

solution U TM at time t TM is to be calculated. Formally, the values of the solution at times

t n and time t "+1 can be expressed by the second-order Taylor series expansion about an

arbitrary time t n+° where a is an implicitness parameter with values between zero and one:

-2 At_ n+o
U_+'-Un+°+(1-a)AtU'_+°+(1-a)--_-U. +O(At 3)

(2.24)
2 At2 - n+a

U _ = U _+° - o_tU_ +° + o _ut, + O(AP)

By subtracting these two formulas a formula is obtained for an increment of the solution

between steps n and n + 1:

At2- n+a

AU = U "+1 - U" = AtU'_ +° + (1 - 20) -.-_--U, + O(At 3) (2.25)

Observing that:

U"+_ = U_ '+_ + O((a - _)At) (2.26)It

a second implicitness parameter can be introduced into equation (2.25) while still preserving

the second-order accuracy,

At _ U.+a
AU --AtU'_ +° + (I - 2o)--_-- u + O(Ai 3) (2.27)

11



The next step is to expressthe quantitiesevaluatedat times t '_+" and t "+_ by quantities

evaluated at the basic steps t" and t TM,

U_ +_ = U_' + oAU, + O(At 2) (2.28)

U'_t+_ = U'_t + _AUu + O(At 2) (2.29)

Substituting these formulas into equation (2.27) yields a two-parameter expansion:

At 2

AU=At(U'_ + _AU,) + (1 - 2c_)--_- (Ut"t +_3AUu)+O(At 3) (2.30)

Now, following the procedure outlined by Lax and Wendroff [21], the governing equations

can be used to replace time derivatives with spatial derivatives. This substitution yields a

formula for the first derivatives:

v _ FC. (2.31)Ut -- Fi, i ,,,

and for the second-order derivatives:

where Ai, Pi, andRij are the Jacobian fluxes

_
,i

or " OF '
OFC P, - R_ = _ (2.33)

A, = O---U-- OU OU,_

The convective terms in equation (2.32) involve spatial derivatives up to fourth order. Lim-

iting this formula to terms with second--order derivatives, which can be effectively handled

by C ° continuous finite elements, yields the following approximation for the second-order

time derivative

U,, = (AiF_.k),, + O(p,k) (2.34)

where O(p, k) represents a quantity of the order of the viscosity parameters in the Navier-

Stokes equations. Substitution of formulas (2.31) and (2.34) into the incremental equations

(2.30) gives the implicit formula:

AU trF "- (AF[, ART.,)]= At L\ *,* s,* / +0: --

At 2 (2.35)

12



For the sake of maximum generality, a third implicitness parameter can be introduced

by observing that

aAF_-aAFCi=,_AF_i_-aAF_i+(o-_)O(l_,k)O(At) (2.36)

Substituting this expression into (2.35) yields the three-parameter implicit form for the

increments of the conservation vector

AU = At [(F_.'_- F9_ v _ oAFCi]_, ,., ,,, / + _AF;,_

.At 2 (2.37)

Equation (2.37) represents a nonlinear formula for increments of the solution U at a

given time step. This formula is nonlinear due to nonlinear dependence of the fluxes and

Jacobians on the solution U. This equation can be linearized, while still preserving second-

order accuracy, with the resulting incremental formula:

AU + oAt(A iA ),i--'_At RoAU,j ,,+(PiAU),,

- (1-2o)_-_ (a_ay_u_),, (2.38)

(F TM FC.n_ At2 (anFCn' _
= At _ i,, - ,,, / + (1 - 20) _ k.--.i k,kJ,i

The particular form of this evolution equation used in the finite element approximation

corresponds to setting o - 0 in (2.38). For this special case one obtains

AU

_ fl At_

n Cn- (a,- ,,,j+--_-

(2.39)

VVeak Formulation

In order to obtain a weak variational formulation of the incremental equation (2.39), we

introduce the space of test functions

13



= {V = (V1, V2... Vm) s.t. Vi (5 Hl(f_) and V/= 0 on FD) (2.40)W

where M is the number of conservation variables, Hl(f_) is the usual Sobolev space of func-

tions with derivatives in L2(f/), and I-'D is the boundary with specified Dirichlet boundary

conditions. After multiplication of the incremental equation (2.39) by an arbitrary test func-

tion V(x) E W, integrating over the domain f_ and application of the divergence theorem,

the following weak formulation of the problem is obtained:

FindAUEWs.I. VVEI4":

fn (,,aU. + -_AtR_'_AU.., • V,_
V

+_tAtP'_ AU. V _ + \ 2 A'_A'_AU j . V _ d_

-f_,_ (.r_,n,tl,_zXU.j.V

+ -/At7_,P':/tU. V +/3 --_- n_A_ A_ zaU,_. V� dS

2 A'_A'jU"i" V,_ dgl

( n,A,,C';. V)dS+fo, -At,, (r7"- F 'n).y +

(2.41)

It can be shown by the selection of appropriate test functions that the solution of this

problem is, in the sense of distributions, the solution of the boundary-value problem, to-

gether with appropriate boundary conditions. Additional details concerning implicit Taylor-

Galerkin methods may be found in references [11,15,22,31].

2.2.2 The Two-Step Algorithm

A second algorithm investigated during the course of this project for solving Navier-Stokes

equations is based on a two-step approach [8,10,28]. The method consists of advancing

the solution in time by performing interchangably two steps associated with the convection

operator E and the diffusion operator H corresponding to inviscid and viscous terms in

equation (2.1):

U TM = G(f)U"

where G(t) = H(t)E(t). The convection operator E(t) is defined by:

(2.42)

14



(E(t)U0)(z) U(x, l)

where U(x, t) is a solution to Euler equation:

(2.43)

v., + F5 (u),, = 0
u(z,o)=uo(z).

The diffusion operator H(t) is defined by:

where U(z, t) is a solution to:

(H(t)Uo)(*) _r V(z,t)

(2.44)

(2.45)

U,t = Fir(U),,
(2.46)

Problems (2.44) and (2.46) must be augmented by appropriate boundary conditions, a

detailed discussion of which is given in the following section. It should be mentioned that a

different composition of operators H(t) and E(t) gives a three-step procedure of the form

t t

G(t) = H(_)E(t)H(_) (2.47)

which is second order accurate while our two-step procedure is only first order accurate

in time. This however is not of our concern since we are interested only in steady-state

solutions.

In tile numerical implementations, exact operators E(t) and H(t) are replaced by their

discrete approximations. The motivation of applying this two-step approach to solving

Navier-Stokes equation was that different solvers or even different spatial approximations

could be used for the Euler and viscous steps. We may take advantage of this flexibil-

ity especially in modeling boundary phenomena: solving, for instance, the convection step

with a specialized and very efficient Euler solver and linear approximation, while using very

accurate higher order approximation in boundary layer zones in the viscous step.

The Euler (Convection) Step

In this work, we approximate the Euler step (2.44) by a second order Taylor-Galerkin scheme

while the viscous step (2.46) is approximated by a first order finite difference approximation.

15



This reducesthe problem to solvingat eachtime stepelliptic-like boundary valueproblems
for which weemploy our h-p finite element method for the spatial approximation.

A Taylor-Galerkin scheme for the Euler equations is obtained by simply setting F v and

the various derivatives of F_" to zero in equations (2.39) and (2.41). For completeness, this

procedure is summarized below.

Given a domain fl C ill'N, the compressible Euler equations are characterized by a system

of conservation laws of the form

U_+Fc(U),i=O z E l'l,t > 0

accompanied by an initial condition

(2.4s)

U(x,0) = U0(x) x Efl (2.49)

and by appropriate boundary conditions.

Now taking equation (2.39) and setting R/j, Pi and F y to zero one obtains an evolution

equation for the conservation variables

AU

n Cn

- AtFf: +

(2.50)

The corresponding weak formulation follows from (2.41) as

Find AU E W s.t. V V E W

--_--_A, Aj AU,j

= fa (AtFCi n " V,i _ Ai AjU.j "
/

At 2 ,, ,, \

(2.51)

The Taylor-Galerkin method for solving the Euler step is unconditionally stable for

/3 > 0.5 independently of the approximation in the space variables. The second-order terms

present on the left-hand side modify the L_-projection and contribute to the stabilization of

the method. Additional details are given in [8].
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The Viscous (Diffusion) Step

The second step in the two-step method is the viscous or diffusion step defined by equation

(2.46). In this step, the density remains unchanged and evolution equations for the mo-

mentum and energy may be fully decoupled provided that the boundary condition for the

momentum equations can be formulated so that they do not contain energy terms. Under

this assumption, one arrives at a system of two equations to be solved simultaneously for

the momentum components

Omi

0--7- = ri_,j

and a single scalar equation to solve for the total energy

(2.52)

0e

O-'t = (r, juj),, + q,,i (2.53)

As a starting point in the solution of the momentum and energy equations, we introduce

a Taylor series expansion of the conservation vector U about an arbitrary time t +/_At

u(t + :_)-/_AtU t(_+ :_) = U(t) + (1-/_)AtU,(t) + O(At2) (2.54)

where :3 is a constant between zero and one. Again using the Lax-Wendroff procedure for

replacing the time derivatives by spatial derivatives one obtains

and

,,_+' -/_At,,_,¢_= m; + (1-/_):,tr,]., (2.55)

2

(T_+_:+_ ,_T_+_3
i=1

2

= e_ + (1 -/_)_t _ (ri_u _ + IcT'_),i
i=l

(2.56)

The procedure for solving the system of equations then becomes: solve the inviscid step

using the implicit Taylor-Galerkin method outlined in (2.51), next solve the momentum

step defined by equation (2.55), and finally solve the energy equation for the temperature.

Combining these results as indicated by equation (2.42) advances the solution of the Navier-

Stokes equation found in time by At.
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The variational formulation for the momentumand energyequationsareobtained using
exactly the sameprocedure that wasused for the convectiveor inviscid step. Performing
thesestepsone arrives at the following variational formulations:

Find rn_ +1 such that

and

/n rn'_+lVidf_ + flAt fn ri'_+l Vi"/df'/

n ij njVidS = rn'_Vidf_

for every Vi

Find e '_+1 such that

e"+1Vd_ + d_t fa KTT+IVdn

-/3At fon KT_+lniVds =

fa c"Vd_ - (1- /_)At fn ,_TTV,,dfl

+ (1 - Z)At _ KT'_niVdS

+ +' + - da

(2.57)

(2.,5s)

for every 1,1

Note that in the variational formulation of the energy equation one obtains a volume

integral which is a function of the stress and velocity at time t + At. By allowing the

viscosity parameters A and p to lag a time step, we are able to first solve the momentum

equation for the velocity components and then explicitly evaluate this final term.

2.3 Boundary Conditions

This section presents a general overview of COMCO's approach to prescribing boundary

conditions for the Navier-Stokes equations. This approach is based upon a linearized stabil-
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Figure 2.1: The symmetrizer.

it), analysis of the Navier-Stokes equations which results in the following entropy stability

condition that must be satisfied on the boundary

fon (16UT AoAn6U - 6UT Ao6t.) ds >__O (2.59)

In this equation, _U is the variation in the conservation vector, A,, is the normal Jacobian

matrix defined by A, = Aini, Ao is the symmetrizer of the Navier-Stokes equations shown

in Fig. 2.1, and gt,, is the variation in the normal viscous flux. Additional information on

the symmetrizer and stability conditions (2.61) can be found in references [8,9].

2.3.1 Boundary Condition for the One-Step Algorithm

We begin our discussion of boundary conditions for the implicit one-step Taylor-Galerkin

methods by quoting a result of Strikverda [29], which specifies the number of boundary

19



conditions necessaryfor well-posednessof the linearizedEuler and Navier-Stokesequations.
Theseresults aresummarizedfor two-dimensionalproblemsin Table 2.1.

Table 2.1

Type of
Boundary Euler Navier-Stokes

supersonic inflow 4 ess 4 ess

subsonic inflow 3 ess 3 ess + 1 nat

subsonic outflow 1 ess 1 ess + 2 nat

supersonic outflow 0 0 ess + 3 nat

no-flow 1 ess 1 ess + 2 nat

solid wall

--isothermal _ 3 ess

--heat flux -- 2 ess + 1 nat

In this table, "ess" denotes the essential boundary condition and "nat" denotes natu-

ral boundary conditions. The essential conditions are to be imposed on the characteristic

variables rather than the conservation variables. It is important to note that the numbers

presented in the table are true for problems that are not regularized. If artificial diffusion is

built into the algorithm or added explicitly, natural boundary conditions should be imposed

on these terms even for Euler problems. Moreover, since artificial diffusion can affect all

conservation variables, the number of natural boundary conditions for these terms should

actually be one more than for the (nonregularized) Navier-Stokes equations.

Before launching into a full discussion of the various classes of boundary conditions, it is

useful to first recast the boundary integrals in terms of the characteristic variables (Riemann

invariants). In the variational formulation a typical boundary term is of the form

Aini,AU. V = A,_AU. V

where AT, is a nonsymmetric matrix.

respect to its own eigenbasis as

The matrix An can formally be represented with

M

= Z ao(co®bo)
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where bo and co are the left and right eigenvectors, respectively. The eigenvalues Xo for the

two-dimensional case are

)_1 "- I/n -- ¢

)_2 -- tin

)k 3 -- It n

_4 = un+c

(2.62)

where un is the velocity normal to the boundary and c is the speed of sound. The expressions

for eigenvectors bo and e_ can be found in references [8,12,29]. Note that a positive value of

X, means that the corresponding characteristic exits the domain across a given boundary,

while negative values of Xo correspond to signals entering the domain. As a general rule, the

characteristic variables corresponding to characteristics entering the domain (negative X_,)

need to be specified as the essential boundary conditions, while the characteristic variables

exiting the domain are continued across the boundary from the interior.

The characteristic variables AUo are defined as components of the vector AU in the

eigenbasis of An so that

ZXU = (,aU.bo)co = AxU_c_,

y = (Y.e )bo = Vobo

With these definitions, the boundary formula (2.60) can be presented in terms of character-

istic variables as:
M

a.zau, v = aovo vo (2.63)
a'-----1

The above representation is very useful in the formulation of essential boundary conditions.

In the following sections the formulation of the boundary conditions for various boundary

types is discussed. Additional details can be found in [12,13,25] and references therein.

Supersonic Inflow

On a supersonic inflow boundary, the values of all the characteristic variables (thus also of

all the conservation variables) are specified as the upstream values. Formally, this means

that

U =U (2.64)

or, in incremental form,

A U = U - U n on 0_ I
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In practical applications these conditions are enforced by the penalty method, which is
obtained by adding to the variational formulation a term

e being a small parameter.

Supersonic Outflow

On a supersonic outflow boundary, all characteristic variables propagate along characteristics

so as to be continued fi'om the interior of the domain and no essential boundary conditions

are imposed. The explicit algorithm application of supersonic outflow boundary conditions is

achieved simply by calculation of the boundary integrals. In the implicit algorithm, natural

boundary conditions are imposed on viscous and second-order terms.

Natural boundary conditions on viscous terms are imposed by observing that the viscous

boundary terms on the left-hand side of the variational equation (2.41) can be interpreted

as

u )av, " _ piniql1_j) AUjds--"//kt (Rijni_j, j I +

--t At A F_'k_1ds

where the components of AF v are

ZlF_' = {0, Aax,, Aa2,,Aq,}T

and g'(x) are the shape functions. In order to formally impose natural boundary conditions,

the above terms are transferred to the right-hand side with prescribed values of AF v, so

that the new right-hand side is

RI = Rl + 7At_--"F,, _tds
O

Note that since the mass flux due to viscous terms is identically zero, this procedure actually

imposes only three natural boundary conditions (in two dimensions).

The choice of the actual conditions is somewhat arbitrary. Currently two options are

implemented, namely,

• zero change of flux at the time step (frozen viscous flux):

= 0
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• zero total viscousflux, enforcedby:

=0- °

Obviously, on an outflow boundary adjacent to a solid wall the viscous fluxes are not zero

and the first procedure is more appropriate.

In order to ensure well-posedness of the problem, proper natural boundary conditions

should also be imposed on the second-order terms. Analogously as in the viscous case,

second-order terms on the left-hand side of equation (2.41) can be transformed to the form:

K Dj A u j = fOf_o - _ A-_'-'_2q_, (A,_ z_ F J,J ) ds

This term has no simple physical interpretation and therefore the selection of the natural

boundary condition to be imposed is somewhat difficult. The procedure adopted by Demkow-

icz, Oden, and Rachowicz [8] is to decompose the above term into components normal and

tangential to the boundary and impose boundary conditions only on the normal term (sym-

metry boundary conditions). In this work, a slightly different procedure is applied, according

to which the whole term is transferred to the right-hand side with certain prescribed values.

This corresponds to imposing natural boundary conditions on

A_AF_,j = A_AjAU,j

The actual boundary condition applied is to set the total value of this term to zero, so that

the prescribed value at the time step is

AnAjz_U j = 0 - A,,AjU_ (2.65)

An interpretation of this condition can be obtained by observing that for Euler problems,

the enforced condition is AnU = 0, or in terms of characteristic variables,

Ao/_r_b_ = 0 _ = 1,..., M

Since, on the supersonic outflow, all the eigenvalues satisfy Ao > 0, this condition means

that the characteristic variables do not change in time as they exit the interior across the

boundary.

A somewhat more appealing interpretation can be presented for the simple two--dimen-

sional advection equation

= aiU,i i = 1,2

for which the characteristics are straight lines defined in space--time by the vector e =

{al, a2, 1 }. The natural boundary condition corresponding to (2.65-) is:

niaia.iU.j = 0
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or equivalently:

a.(DU, a) - 0

where (DU, a) denotes the directional derivative of u in the direction of a. This means

that on the outflow boundary (a_ > 0) U must be constant along advection lines.

On a contour plot, this forces contours of U to be parallel to advection lines on the bound-

ary. It can be observed that the condition applied by Demkowicz, Oden, and Rachowicz [8]

causes derivatives of U along the normal to the boundary n to be zero, which corresponds

to contour lines normal to the boundary.

Subsonic Inflow and Outflow

On a subsonic inflow or outflow boundary, essential boundary conditions are imposed only

on the characteristic variables corresponding to negative eigenvalues )_. For each of these

terms, the corresponding condition is

2xU. = AU.b_

_-(o-
where the prescribed far-field values of the conservation variables are denoted by U. The

penalty term enforcing essential boundary conditions on the increments of selected charac-

teristic variables AU,_ is of the form

1 f0n(C_ ® bo)_t_idsK Ij = "_

1 f0 [(U - Un)" b,_] c_,dJldsRj -- -_ a

Nodewise application of these conditions is obtained by replacing the shape functions with

Dirac delta functions associated with boundary nodes.

For the characteristic variables with nonnegative eigenvalues, continuation from interior

conditions are employed. These conditions for selected characteristic variables involve rather

complicated formulas. Thus, for practical applications it is better to observe that, since

the penalty procedure actually overrides any other conditions, the continuation condition

can first be applied to the whole vector of conservation variables (by the supersonic outflow

procedure), and then the above penalty method can be applied to selectively enforce essential

boundary conditions.

In practical implementations of subsonic outflow boundary conditions, some authors

choose to prescribe a value of pressure t5 rather than the value of the characteristic vari-
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able. The incrementalform of the pressure boundav 9 condition is

Ap = 15- p"

and can be enforced by a penalty method. The corresponding penalty term in the variational

formulation is

1 [Ap - (t5 - p")]. _(Ap) (2.66)
e

The pressure increment Ap can be expressed in terms of conservation variables as

A p = ff---_ A U = d . ,flU

where d = ('7- 1){_, u,,u2,1} T (in the two-dimensional case). Therefore, the penalty

term becomes

1 [d. aU - (# - P")I (d. V) (2.67)
6

where V is a test function. The corresponding stiffness matrix and right-hand side are then

1 fad ® d k_SqJjdsK1a ¢ a

l fo d(p pn)qgldsR_ e a

Solid Wall

There are basically two types of solid wall boundaries:

• adiabatic walls with prescribed zero heat flux (M-th component of the viscous flux

vector):
V

q,_ = F,_tM ) = 0

• isothermal walls with specified temperature:

T=T

In addition to the above conditions, zero velocity (zero momentum) conditions are also

specified on the solid wall. These conditions are easily enforced by the selective application

of a penalty method, similar to the supersonic inflow procedure. The incremental form of

the adiabatic condition of zero heat flux is

v v
AF=(M) = --F.(M) (2.68)

25



This natural boundary condition is applied by formally transferring the viscous terms cor-

responding to the energy equation from the left-hand side of the variational equation (2.41)

to the right-hand side and setting the increment of the heat flux according to (2.68). It is

of interest to note that since the viscous terms do not directly affect mass fluxes and the

momentum equations are overridden by the penalty method, in practice all viscous contri-

butions can be skipped on the left-hand side.

On the isothermal wall the additional boundary condition is a prescribed temperature T

or, equivalently, a prescribed specific energy & Since the kinetic energy is zero on the wall,

the above condition can be expressed in terms of conservation variables as:

e

P

In the incremental form this condition becomes

l__Ae e e")
P - _-_Ap = -

(2.69)

This condition is imposed via the penalty method. It should be noted that there are available

a variety of possible forms of the penalty terms, depending on the form of the test term

applied to condition (2.69). One possibility, which appears to be the most natural and yields

a symmetric contribution to the stiffness matrix, is obtained by testing equation (2.69) with

its own variation:

where I,]i) denotes a selected component of a test vector: V(x) for density and V(M ) for energy.

This approach leads to two penalty conditions affecting both the continuity and energy

equations. Therefore it is not in agreement with the physical situation because, while the

solid wall can supply heat to maintain a prescribed termperature, it cannot supply mass

for this purpose. For this reason, another form of the penalty term should be used, which

enforces a prescribed temperature by altering the energy equation only:

The corresponding terms in the stiffness matrix and the right-hand side are

(2.70)
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wherethe kernel matrices k and r are defined (in two dimensions) as:

k= 1

0 0 0 0

0 0 0 0

0 0 0 0

--* oo 1
P

0

1 0
7" _ m

0

Again, nodewise enforcement of these conditions can be obtained by replacing shape func-

tions with Dirac delta functions.

For the regularized problem some additional artificial terms (fluxes) occur on the solid

wall due to second-order terms and explicit artificial dissipation. These fluxes are forced

to be zero by means of natural boundary conditions, in the same manner as the supersonic

outflow.

No-Flow

The basic condition of tile no-flow boundary is that tile normal velocity is zero or, equiva-

lently, that the normal momentum is zero,

mini = 0

In the incremental form this becomes

--¢ni

This condition is easily enforced by a penalty function, with the addition of the term

1
+ ,,,;',,,)Vo+od, (2.71)

f2w

in the variational formulation, where Vo+i } is the component of a test function corresponding

to momentum mi. The resulting stiffness matrices and right-hand sides are of the standard

form (2.70), with kernels (in two dimensions):

0 0

k = _1 0 nlnl
E 0 Tt2Tl 1

0 0

0 0

nln2 0

n2n2 0

0 0
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0
1 nl

r = ---(mini)
n2

0

For viscous flow, the additional conditions on the no-flow boundary are the two natural

boundary conditions:

where a,, is the skin friction on the boundary and q, is the normal heat flux. The appli-

cation of these natural boundary conditions follows the procedure discussed in preceding

subsections. Similarly, as on the solid wall, all artificial fluxes are forced to be zero on the

no-flow boundary.

2.3.2 Boundary Conditions for the Two-Step Method

This section presents a brief overview of the boundary conditions for the two-step algorithm

outlined in Section 2.2.2. In general, the boundary condition can be constructed separately

for the convection (Euler) step and the diffusion (viscous) step. This holds provided that

they guarantee stability of those steps and possess appropriate asymptotic properties as

the viscosity constants approach zero (Rez _ co). With this in mind, we summarize the

different classes of boundary conditions appropriate for the Euler step, momentum step, and

energy step.

Euler Step

The boundary conditions for the Euler step in general follow directly from the one-step

algorithm with the following special conditions.

1. Contributions of viscous fluxes to boundary terms in variational equation (2.41) are

omitted.

2. The essential boundary condition on a solid wall is limited to enforcing a zero normal

component of the momentum vector. It is accomplished by means of a penalty method,

i.e., by adding the following contributions to the stiffness matrix:

fa (U2n + Uzn )(,Su2n, + 6Vsn )dS

where e is a small penalty parameter.
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Boundary Conditions for the Momentum Step

Boundary conditions for the momentum and energ3" steps were constructed such that the

viscous term in expression (2.59) results in a positive production of entropy and the resulting

boundary terms in boundary value problem (2.57) and (2.58) make these problems well posed.

These boundary conditions can be listed as follows:

Case 1 Open Boundary R Supersonic Inflow

Full Dirichlet boundary conditions are prescribed,

m_+l = mii,_ (2.72)

where ml '_ are the momentum components of the same inflow vector as used in

the supersonic inflow boundary conditions for the Euler step.

Open boundary n Subsonic Inflow

The same Dirichlet boundary conditions are used, but with the inflow vector

replaced with the solution from the Euler step, i.e.,

(2.73)

Case 2

Case 3

Case 4

Open Boundary- Subsonic Outflow

Mixed boundary conditions are used,

_2+1 = _,"

where m,, is the normal component of the momentum,

1Tt n _-- r/_lrt I -_- m2rt 2

and r, is the tangential viscous stress vector component,

7o= (_ - _.)._._ + _1_(._- ._)

Open Boundary _ Supersonic Outflow

Full Neuman boundary conditions are applied,

(2.74)

(2.75)

(2.76)

(2.77)
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Case 5 Solid Wall Boundary Conditions

Full Dirichlet boundary conditions are used,

m_+_ = 0 (2.78)

Case 6 Symmetry Boundary Conditions (of the first kind)

Mixed boundary conditions are applied,

m_+1 = 0

Orn_+l (2.79)
= 0

On

where rn,, and ms are the normal and tangential components of the momentum

vector.

Case 7 Symmetry Boundary Conditions (of the second kind)

Full Neuman boundary conditions are applied:

On - 0 (2.s0)

As in the case of Euler equations, substituting (2.80) into the boundary integral

in (2.57), results in some non-zero terms which must be included in the stiffness

matrix calculations.

In the finite element code, all of the essential boundary conditions have been implemented

using the penalty approach, i.e., replacing the full Dirichlet boundary conditions with

2
in

j=l

and the first of (2.74) conditions with

m_+_+ e_Zxtr."+_ = ,n_

where r_ +1 is the normal viscous stress

2

r. = _ rijninj
i,j=l

(2.81)

(2.82)

(2.83)
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Boundary Conditions for the Energy Step

Case 1

Case 2

Temperature (energy) Prescribed

A single Dirichlet boundary condition is applied

e"+1 = _ (2.84)

The choice of _- will vary with the particular kind of boundary:

• for supersonic inflow _ corresponds to the inflow vector.

• for subsonic inflow _ is evaluated using the solution from the previous step.

• for a solid wall with temperature prescribed _ corresponds to the prescribed

temperature on the wall and the density p (unchanged in the viscous step).

Note that the two-step method eliminates the contradictions resulting from the

discussion of the solid wall boundary conditions with temperature prescribed, as

the density remains unchanged (see [10]).

Heat Flux Prescribed

A single Neumann boundary condition is applied:

OT,_+ I
= (2.85)

On

The heat flux _ is calculated in the following way:

• for subsonic and supersonic outflow, _ is evaluated using the solution from

the previous step

• for an adiabatic wall and symmetry boundary conditions of both kinds, _" is

assumed to be zero.

2.4 Artificial Viscosity

In order to suppress spurious oscillation of the solution an artificial dissipation is introduced

as an additional flux in the Navier-Stokes equations in the form

U,, + FC. = FV. + F A. (2.86)
Ivl I,I 111

where F y denotes the artificial dissipation flux with corresponding Jacobians defined as

ou
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The advantageof this approachis that the artificial dissipation canbe treated usingexactly
the sameformulation and proceduresasfor the natural viscosity. In the one-step algorithm,
for the sakeof generality, a fourth implicitness parameter 3' is introduced for the terms
associatedwith the artificial dissipation. In the calculation of the stiffnessmatrices, right-
hand sides and boundary terms, the sameformulas are used as for the natural viscosity.
Similarly, for the two-step algorithm, the artificial viscosity is implementedasan additional
"viscous" flux when solving the equation of the Euler equation.

In this work, two commonly used forms of artificial viscosity have been studied and

implemented as follows:

• the classical Lapidus viscosity [20]

Fi A = k,U,i (2.87)

with

ki, = ckh 2 [ui,il (2.88)

The Jacobians pA and R A can be defined by a straightforward differentiation of (2.86).

• the generalized Lapidus viscosity due to LShner, et al. [23]

= tk OU or F A = kliljU,.iF A
og.

(2.89)

with

k = V(u.t))

t = Vlul/IVlull
(2.90)

where h is the element size, ck is an arbitrary coefficient controlling the amount of

dissipation, k is a solution dependent set of coefficients, £ is a unit vector parallel to

V[u[, and u is the velocity vector. The tensor product lilj ensures that the artificial

viscosity acts in the direction normal to the shocks. The Jacobians pa and R A can

be defined by differentiation of (2.88). For simplicity, dependence of k and t on the

solution is disregarded, in the definition of jacobians so that

pA = O, R A = klil.iI,13

where I is the identity matrix.

The drawback of the above formulations is that for elements with high aspect ratios the

element size h is not a clearly defined quantity. The wrong choice of h may cause oscillations
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if h is too small or considerable smearing of shocks if h is too large. We have developed

a modification of the generalized Lapidus viscosity (2.88) such that it uses more precise

information about the geometry of the element than just h but still preserves its original

form for square elements. In terms of the contribution to the element stiffness matrix, the

generalized Lapidus viscosity can be written in a slightly different form as

ck At h 2 fau V,i ki.i U ddfl (2.91)

where kij = liljk and k is a solution dependent scalar

(2.92)

The basic idea of constructing the modified artificial vsicosity is to perform the calculation

of (2.90) on the master element, which has a fixed size (h = 2), then map it back to the

physical element domain. As a result of this procedure the modified artificial viscosity is of

the form

.At h2 .m[u V, _'_j U,.idfl (2.93)Ck

where _',j is given as
Oxi Oxj

and kpq is of the same form as in (2.89) except that the unit vector t is taken as

= V lvl/IV lvll

(2.94)

(2.95)

to make the viscosity work in the direction perpendicular to the shocks on the master element.

Ve denotes the gradient calculated on the master element coordinate. It can be shown that

for square element this modified artificial viscosity does coinside with the original expression

(2.90). We have applied this modified viscosity in several test problems where element

with high aspect ratios are used, and have found it to be more effective than the artificial

viscosities defined by equations (2.88) and (2.90).
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3 An h-p Finite Element Method

The aim of adaptive methods in computational fluid dynamics is to optimize the compu-

tational process: to obtain the best results for the least effort. The cost functional in this

optimization process is the numerical error measured in some appropriate norm, both the

global error over the entire computational domain and the local error over each gridcell.

The central parameters are the conventional mesh parameters that govern local accuracy:

the mesh size h, the order p (e.g., the spectral order) of the local approximation, and the

location of gridpoints.

In the h-p FEM one can control both the local mesh size and spectral order of approxi-

mation simultaneously. Such a flexibility allows one to distribute degrees of freedom in an

optimal way: a large density of degrees of freedom can be used in computational regions

with very irregular behavior of the solution while a relatively rough approximation is used

in subdomains where the solution is smooth. This suggests that the h-p method may use

an optimal number of degrees of freedom to achieve a prescribed accuracy. In addition,

recent work in the area of approximation theory [2,3] suggests that an extra gain in accuracy

can be obtained if the enrichment of the mesh is performed in two combined ways: first by

reducing the size of elements h and second by increasing their spectral order p. The problem

of how to combine these two kinds of refinements so that the improvement in accuracy is

the best possible is a very complex issue. In general, its strict mathematical solution is not

known, however, there exists heuristical knowledge on the use of h-p FEMs for many classes

of problems.

In practice the reduction of the mesh size h can be achieved in two ways: by subdividing

elements into smaller sons, or by so-called remeshing, i.e., generating a completely new

mesh with a given distribution of h. Our implementation of the h-p FE method uses the

first approach. We break two-dimensional quadrilateral elements into 4 element sons and

three-dimensional hexagonal elements into 8 sons.

The success of such a complex adaptive scheme depends upon several properties of the

adaptive process: the data structure, the adaptive strategy, the techniques for a posteriori

error estimation, and the flow solver. The potential payoff of a successful h-p adaptive strat-

egy is substantial: exponential rates of convergence may be attained, meaning that complex

flow features can be resolved using orders-of-magnitude fewer unknowns than required by

conventional methods.
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3.1 A Variational Formulation

Let us first specify the class of problems to be solved with an h-p FEM. In this development,

we follow the detailed presentation in our papers [9, 11, 25].

Let l'/be an open bounded domain in _'", n = 2, 3 with a sufficiently regular boundary

0_/. In what follows, we shall restrict ourselves to a class of problems that can be formulated

in the following abstract form:

Here;

Find u • X such that /

fB(u, v) = L(v) Vv • X

(3.1)

X = X x X... x X(m times) (3.2)

where X a subspace of Hl(fl), the Sobolev space of first order, B(., .) is a bilinear form on

X x X of the following form

m

B(u,v)= _ B,j(ui, vj) (3.3)
ij=l

where B,j(., .) are bilinear forms of scalar-valued arguments of the type

Bo(u,v)

= aij _x-xk _ W _ b,,..--Oxk I) "Jl- CijUY dx
k,l=l k=l

(3.4)

f

"q- JOf_ dijuv ds

and

L(.) is a linear form on X

of the form
m

L(,,) = Li(vj)

(3.5)

(3.6)

j---1

with the linear forms Lj(.) acting on the scalar-valued functions

{Lj(v) = In fjv + _=1 J Oxk J dx + fan hjvds (3.7)

In the above formulas, a k.! b_j, cij, f_, g_, dij, hj are sufficiently regfilar functions defined on
13 ,

_ and on Of/, respectively.
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Numerousexamplesfall into the categoryof problemsdescribedby the abstract formu-
lation (3.1). To mention a few: linear elliptic problems(both singleequationsand systems),
linear problems resulting from a one--stepapproximation in time for evolution problems,
linear stepsof a nonlinearproblem solution, etc.

In this formulation, both the solution u and the test functions v are members of the

same space X. Non-homogeneous essential boundary conditions are handled by means of a

standard penalty approach.

3.2 Finite Element Approximation

We assume that the domain _ can be represented as a union of finite elements I(,, e =

1,...,M. More precisely
M

and

e=l

int If_N intK/=¢) foregf

Each of the elements K has a corresponding finite dimensional space of shape functions,

denoted Xh(K), for instance the space of polynomials of order p. The global finite element

space Xh consists of functions which, when restricted to element K, belong to the local

space of shape functions Xh(K). Thus the global approximation is constructed by patching

together the local shape functions in the usual way.

We shall adopt the fundamental requirement that the global approximation must be con-

tinuous. As we will see, this requirement leads to the notion of constrained approximations.

Formally, the continuity assumption guarantees that the finite element space Xh is a sub-

space of H 1(f_) and, with some additional assumptions if necessary, also a subspace of X.

The approximate problem is easily obtained from (3.1) by substituting for u and v their

approximations Uh and va:

Here

Find Uh E Xh

Bh(Uh, Vh) = Lh('Vh)
such that }
Vvh E Xh

(3.s)

Xh -" Xh × ... × Xh(m times) (3.9)

which indicates that the same approximation has been applied to every component of u.

Ba(',-) and Lh(') denote approximations to the original bilinear and linear forms resulting

from numerical integration.
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3.3 Adaptivity

A flowchart of a typical Adaptive Finite Element Method (AFEM) is shown in Fig. 3.1.

The method consists of first generating an initial mesh and solving for the corresponding

FEM approximate solution. Next, the error is estimated in some way and based on this

(usually crude) approximation, one adapts the mesh, i.e., adds new degrees of freedom. The

approximate problem for the new mesh is solved again and the whole procedure continues

until certain error tolerances are met. Obviously, such a procedure requires an estimate of

the error over each element and a strategy to reduce the error by proper changes in the mesh

parameters, h and p.

In our adaptive FEM the new degrees of freedom can be added in two different ways:

elements may be locally refined or their spaces of shape functions may be enriched by incor-

porating new shape functions. As noted earlier, in the case of polynomials, this is done by

increasing locally the degree of polynomials used to construct the shape functions, the first

case being an h-refinement, and the second case a p-refinement. A combination of both is an

(adaptive) h-p FEM. We remark that the process of increasing the local polynomial degrees

for a fixed mesh size is mathematically akin to increasing the spectral order of the approxi-

mation and that, therefore, we also refer to h-p methods as "adaptive spectral-element" or

"h-spectral" methods.

3.4 Regular and Irregular Meshes

As the result of local h-refinements, irregular meshes are introduced. Recall (see [26]) that a

node is called 7v.gular if it constitutes a vertex for each of the neighboring elements; otherwise

it is irregular. If all nodes in a mesh are regular, then the mesh itself is said to be regular.

In the context of two-dimensional meshes, the maximum number of irregular nodes on an

element side is referred to as the indez of irregularity. Meshes with an index of irregularity

equal one are called l-irregular meshes. The notion can be easily generalized to the three--

dimensional case. (See [7] and literature cited therein for additional references.)

In the present work, we accept only 1-irregular meshes. In the two-dimensional context,

this translates into the requirement that a "large" neighbor of an element may have no more

than two "small" neighbors on a side; in the three-dimensional case, the number of neighbors

sharing a side may go up to four, while the number of neighbors sharing an edge can be no

more than two. This is frequently called the "two-to-one" rule (cf. [7]). Examples of regular

and irregular meshes are shown in Fig. 3.2. There are several practical and theoretical

reasons to accept only 1-irregular meshes, especially in the context of h-p methods. For a

detailed argument, we refer to [4].

Our restriction to 1-irregular meshes imposes a simple restriction on the way any h-
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.l

Read in the initialmesh data

Solve the discrete problem

Estimate the error J

Adapt the mesh I Postprocess the solution

1

Figure 3.1: Typical flowchart of an adaptive method.
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(a) Ibl

(c)
(d)

Figure 3.2: Examples of regular and irregular meshes: (a) and (b) -- regular mesh; (c)

1-irregular mesh (index of irregularity = 1); (d) 2-irregular mesh.
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refinementcanproceed:beforean elementis refined, a check for "larger" neighbors must be

made. If any such neighbors exist, they must be refined first and only then can the element

in question be refined.

3.5 Basic Assumptions

As indicated in the previous sections, the construction of an h-p FEM is based on the

following assumptions:

• only 1-irregular meshes are accepted for all h-refinements;

• the local order of approximations may differ in each element;

• the approximation must be continuous.

3.6 Definition of an Elelnent

The classical definition of an element is a triple

{K,X,_i,i = 1,...,N}

where K is the domain of the element (a subset of/_2 or g,3), X is an N-dimensional space

of shape functions:

Xg_i:K_I_,i=I,...,N

and _i, i = 1,..., N is a set of degrees of freedom, i.e., a set of linearly independent linear

functionals on X.

The element base shape functions X'i are understood as a dual basis to Pi:

Xi E X such that

(qZi, Xj) = 6ij, i,j = 1,...,N

Following this classical construction we define a two-dimensional quadrilateral element as

follows. In the first step we introduce a two-dimensional master element

The domain _" is a unit square, K = [-1,1] 2. The space of shape functions X" is a subset

of QI'(K), i.e., polynomials of the order p in each variable. We define this subset in such a

way that X has the following properties:
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i) Each function in ._" can be associatedwith one of nine nodesof the element: four
corners,four midside nodesand the centroid; the maximum order of a shapefunction
associatedwith a given nodeis viewedasthe order of this node.

ii) The baseshapefunctions constituting .'_ will be so-called hierarchical shape functions,

which means that enriching the element from the order p to p + 1 consists of adding

some higher order functions to .'V without modifyin 9 the functions already belonging to

X.

Space ._ with these properties is constructed as follows: First we introduce one--dimensional

hierarchical shape functions on [-1,-1]:

1

xo = 2(1 - x) (3.10)

1

X1 = 7( I +x) (3.11)

X_ = x_- 1 (3.12)

);3 = x 3-x (3.13)

),4 = x 4-1 (3.14)

... (3.15)

(Figure 3.3) The corresponding degrees of freedom can be associated with the two endpoints

-1 and 1 and the midpoint 0:

(4o,U) = u(-1) (3.16)

<_,,u) = u(1) (3.17)

diu i = 2,3, (3.18)
(_,,u) = A7'dx---7, ...

where Ai are scaling factors.

Note that the linear functions ).0, X, assume values 0, 1 at the endpoints while all the

higher order functions vanish at 4-1.

Then for a two-dimensional element we associate the following functions with the sub-

sequent nodes:
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=(-1) Xo(:,)

s'?,,"'(o)//_ X_(::)

I
-i 0 1

Figure 3.3: One-dimensional hierarchical master elements. Degrees of freedom and corre-

sponding shape functions.
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i) The bilinear functions

xo(x)xo(u), xo(x)x,(u), x,(x)xo(y), x,(_)x,(u)

with corner nodes z, y = 4-1.

ii) The functions linear in one direction and higher order in the other, with midside nodes:

x_(_)xo(u),...,x,_(_)xo(u),
x_(_)x,(y),..., x,3(x)x,(u)
xo(_)x2(y),...,xo(_)x,,,(y)
x,(_)x2(y),..., x,(x)x,,_(y)

• The functions at least quadratic in both directions, with the centroid:

X,(z)Xj(y), i,j = 2,...,ps

where pl,... ,P4 denote degrees of approximation of midside nodes, p5 the degree of a

centroid node (see Fig. 3.4).

The above set of shape functions is dual to degrees of freedom which are tensor products of

one-dimensional degrees of freedom given by (3.18). These degrees of freedom can be listed

as follows:

• function values at four vertices:

u(-1,-1),u(1,-1),u(1,1),u(-1,1) (3.19)

• tangential derivatives (up to a multiplicative constant) up to p-th order associated with

the midpoints of the four edges:

-10qklt

Ak _-_x_(0,-1) k = 2,...,pa

)_ 10kt/

; _7(1,0) k=2,...,p_

-a Oku

Ak _--_zk(O,1) k = 2,...,p3

(3.20)

l Oku

_" _-gyk(-1, 0) k = 2,...,p4
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P3

P5

.q

P2 _ _

P1

Figure 3.4: Associationof ordersof approximation with nodes.
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• mixed order derivativesassociatedwith the central node

-1 Ok+Iu

,X_-')_t 0x--:_0ye(0,0) k,l = 2,...,ps (3.21)

Having constructed the master element we define a subparametric element K. It is obtained

by mapping of the master element K into an actual computational domain:

The mapping T is defined as
9

=
i=l

where ATi, i = 1,..., 9 are the regular (Lagrangian) shape functions for the 9-node biquadratic

element, ai are the desired positions of nodes of K in the computational domain. The space

of shape functions of K is taken as a space of compositions of T and _i E ._':

The degrees of fi'eedom of K are defined using _/'s:

with t/,_ = _T

The definition of a two-dimensional element given above can easily be generalized to the

three-dimensional case. For completeness, we outline the major steps of this construction:

We introduce cube subparametric elements: actual elements are images of a cube master

element K = [-1, 1] a under the mapping T: K _ If C R 3

27
i

z i = _ xjNj(_), (3.22)
j=l

where ._,'i are second order Lagrangian polynomials associated with 27 element nodes: 8

corners, 12 midpoints of edges, 6 centers of walls and one central node.

We equip a master element with the space Xh(K) of p-th order hierarchical shape func-

tions defined as a triple tensor product of a set of one-dimensional hierarchical shape func-

tions X;(') on an interval [-1, 1]. Actual shape functions of K, Xh(K) are as usual compo-

sitions of the mapping T -1 and shape functions on K:

Xh(K) = {u = fiT-' I fie Xh(K)}. (3.23)

Degrees of fi'eedom _ associated with the hierarchical base shape functions on a master

element are defined as follows:
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• function valuesat 8 corners:
u(+1,+1,+1),

• Tangential derivatives (up to a multiplicative constants)up to p-th order associated

with the midpoints of edges:

Oku

A_1 07' k = 2,...,p,

where s is a coordinate parallel to the edge,

• mixed order derivatives associated with centers of walls:

Ok+lit

A_zAi -I OskOr t

where s, r is a pair of coordinates parallel to the wall,

• mixed order derivatives associated with a centroid:

Ok+l+mtL

A_.I Ai- I A_,I OxkOyZOzm"

Degrees of fi'eedom of the actual element K are defined as

3.7 Continuity for Regular Meshes

One of the fundamental advantages of using the hierarchical shape functions is the ease with

which they allow one to construct a continuous approximation with locally variable order of

approximation. A typical situation is illustrated in Fig. 3.5. If elements K1 and K2 are to

support polynomials of degree, say, one and three, respectively, then there are at least two

ways to enforce continuity across the interelement boundary. One way is to add two extra

shape functions of second and third order corresponding to the middle node A of element Kz.

Alternatively, the same two shape functions may be deleted from element K_. In all these

cases, a common order of approximation along the interelement boundary can be enforced

by simply adding or deleting the respective shape functions from the neighboring elements.

While any of these choices can be made, the results described here employ the "maximum

rule" in which the higher--order approximation dominates lower orders. Thus, if an element

is p-refined, i.e., a higher order approximation of degree p is introduced, the neighbors of

lower order are enriched by the addition of extra shape functions of degree/5 necessary to

guarantee continuity of the approximation.
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Figure 3.5" Continuity by h_erarch_cal shape functions. (c_ _91_
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3.8 Continuity for 1-Irregular Meshes. Constrained Approxima-

tion

Continuity of the approximation on 1-irregular meshes is a more complicated issue. It leads

to the notion of a constrained approximation that we introduce in this section.

Consider two adjacent square elements in a 1-irregular mesh, one having an irregular

("hanging") corner node on the side of the other (Fig. 3.6). The first condition that must

be satisfied to make the approximation continuous across the common boundary F! is that

the spaces of shape functions of elements Kc and K I, if restricted to FI, be identical:

Xh(K_)iF, = Xh(KI)iFs (3.24)

This means, of course, that the orders of approximation for nodes 1 and 2 (Fig. 3.6) must

be equal. Condition (3.17) is exactly the same as that for regular meshes considered before.

Denote by _'i,K,(_c), ¢i,Ks(X) the base shape functions of elements Ke and K! which do

not identically vanish along F s.

Assume that the common order of nodes 1 and 2 is p. Since spaces Xa(K,)irs and

Xh(Kl)lr j are identical there must exist a unique linear invertible relation between functions

constituting the basis of these spaces:

P

¢/,u,(=)lrs = Y_ dRi>¢j,u,(_)lr,, i -- 0,... ,p (3.25)
j=O

In this formula, the functions involved are assigned indices from 0 to p corresponding to

orders of the functions. Coefficients dR 0 are calculated in one of the next sections. The

superscript d distinguishes between the two generic situations: K I may be attached to the

left or the right part of K,. Formula (3.25) implies that the degrees of freedom of Kc and K!

corresponding to functions involved in (3.25) are also related by a similar equation: take any

continuous function uh(x) such that UhiK_ 6 Xh(K_), uhius 6 Xh(KI). Then its restriction

to Fj can be written as:

P

'_hlr, = _, U,¢'i,u, (x ) Irs
i=0

where

p

= __, u,_',.1;s(=)ir, (3.26)
i=O

U, = (_,.u.,"hl,.) , "_= (_,,u,,',hlh',)

are values of degrees of freedom obtained for elements K, and K! and _i,K,, _Oi,K I

degrees of fl'eedom understood as linear functionals on Xh(K_) and Xh(KI).

(3.25) into (3.26), we obtain:

P P P

__, _ U, dR,jCj,u,(=)lr, = __,,,,¢,._,',(x)Ir,.
i=0 j=O i=0

(3.27)

are the

Introducing

(3.28)
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K_

x=-I _=0

=-I x=l

V - _=I

Figure 3.6: Two adjacent elements in a 1-irregular mesh.

49



Since representation of any function from "PP(FI) in terms of the basis Cj.h-j(x) Irj, j =

0,..., p is unique, we finally find that:

or, in view of (3.27),

p

ui = _ Uj dRji , i = O,...,p (3.29)
j=O

p

(_,,_-,,_hlu,)= Z(_j,s-.anj,,uhls-.) i = o,...,p, (3.30)
j=O

Formula (3.30) expresses the relation between degrees of freedom of K, and K l necessary and

sufficient for continuity of approximation along Ft. Necessity was shown above. Sufficiency

follows from (3.25) and (3.30):

For an)' Uh such that Uhlt,',

have

E Xh(K_), uh[uj E Xh(KI), not necessarily continuous, we

p

(uhll,.)lrj = _@_,a-.,_hls-.)O_,_,-.Ir¢=
i=0

P P

E(_,.,,-., u_I,,-.)E_R,j¢_.,,.,Irj
i=O j-O

P

(_hlu,)lrl = _{¢;,K,,,,_11,-,)¢,,u,lr1=
i=O

P P

-- _ __.@j,u.aR_,,UhIh.)_',,U. IFs
i=0 j=O

i.e., (Uh [l,',)[F.t = (Uh [I,'j)[F! which means that uh is continuous along F.t. Relation (3.30)

is referred to as equations of constraints.

The main idea of a constrained approximation is to replace the degrees of freedom of K!

involved in (3.30) by a new set _i,_-l, i = 0,... ,p related to the old _i,Kj by the matrix dRij:

p

(3.31)
i_O

Then the continuity condition (3.30) in terms of _j,Kt becomes:

(_j,K 1 , UhIK !) --" (_j,K,, UhIK,) (3.32)

i.e., the condition which is formally the same as the condition for continuous approximation

on regular meshes. As a consequence, an element K! equipped with degrees of freedom _j,KI
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can be treated in all proceduresof finite elementcodeinvolving continuity (like assembling
stiffnessmatrix) exactly the same way as elements of a regular mesh.

The degrees of freedom _j,h'j defined by (3.31) have a simple interpretation. To compute

(_j,h-l,¢) for any ¢ E Xh(K 1) it suffices to find any continuous extension Uh(X) such that

UhlK! = f, UhIK, E Xh(Ke) for which (3.32) holds, i.e.:

(_j,K,, f) = (qzj,h',, uhl_,',) (3.33)

In fact, since the action of _j.h', involves only values of uhlh', along the side F,, we need only

extend f to F_ and such an extension, since it must be a polynomial, is unique:

fir, = w(s)= polynomial of s, (3.34)
extension of f to F, d&t.W(S)

and moreover

w(s=:t:l), j=O, 1(_3j,1,j,_) - (_./.,,',, UhlK,} -- ad.iw (3.35)

A7 _-j-sj(O), j = 2,...,p

Illustration of w(s) and degrees of fi'eedom _j,1,'j is given in Fig. 3.7a.

We observe that an additional advantage of this approach is that _j,Kj can be associated

with certain points: endpoints and a midpoint of F_, i.e., points coinciding with nodes of the

anticipated neighbor. We call these nodes active (actual) nodes of an element while nodes

corresponding to original _i.Kj constrained nodes (Fig. 3.7b).

In case an element is adjacent to two larger neighbors, the transformation of degrees of

fi'eedom analogous to (3.31) should be performed for the other side of the element as well.

Interpretation of S3ja; I shown in Fig. 3.7a suggests a convenient and intuitive way of

treating a constrained element as if its domain included not only the original square but

also the adjacent sides of bigger neighbors. This idea gives also a very easy interpretation

of assembling constrained elements into a mesh: we connect appropriate actual nodes of

elements as for regular meshes (Fig. 3.8).

We conclude this section with a discussion of the problem of evaluating the shape func-

tions dual to the new set of degrees of freedom. Let us write the transformation of degrees of

freedom resulting from applying formula (3.31) to one or two sides of a constrained element

in the general form:

= , ieN
j=l(;)

(3.36)

_i = 7_i , iEN a
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a)

ds

0 _ 1

b)
A

0 _ constrained nodes

• ms. actual nodes

Node A is both constrained
and actual

Figure 3.7: A constrained element: (a) illustration of w(s) and degrees of freedom _j,s'j ; (b)
active (actual) and constrained nodes.

52



io:i:
+

®

®

+

®

÷

÷

iQ÷ ®

•4- ÷

® ®

_®

÷

®

Q

÷

Figure 3.8: Assembling constrained elements into a mesh.
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where N c is a set of indices denoting degrees of freedom associated with constrained sides

(i.e., appearing on the left hand side of (3.31) applied to one or two constrained sides of the

element, whichever case is considered), Na-indices of the remaining degrees of freedom, l(i)-

indices of new degrees of freedom _j contributing to a given qai, i E N c. (3.36)2 expresses

the fact that Ti's not involved in constraints remain unchanged. Relation (3.36) is invertible

since (3.31) is invertible. The change of basis in any linear space is given by:

N

=
j=l

N

j=l

(3.37)

This implies a change of dual basis according to:

_/'i = _, A,ig'j
j=l

r

N

= _ A,_I_j
j=l

(3.38)

Formulas (3.36) correspond to (3.37)1. This means that expressions for the new base shape

functions _"i can be found by simply transposing the linear relation (3.36) defining _i.

Transposing (3.36) to obtain _/'i results in the following formula:

, ieN *,

_ ies(o

_bi , i E N _.

(3.39)

where S(i) = {j E Nc: _i contributes to ¢p./in (3.36), i.e., i E l(j)}.

As a simple example of constraints and application of presented formulas consider a

bilinear element with two constrained sides, i.e., adjacent to two larger neighbors, Fig. 3.9.

In this case values of degrees of freedom are just values of shape functions at the corner

nodes and conditions for continuity have an obvious form: a value of a shape function at a

"hanging" node must be equal to the average of the corner values of the shape function of

the larger neighbor (Fig. 3.10). Hence, recalling the interpretation of _i's (Fig. 3.7a), we
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write equations(3.36) for elementconsideredasfollows:

1 ~ 1_

1 1~

_4 = 7_1 +7_4

(3.40)

_3 -- _3

In this case, N c = {1,2,4}, N" = {3}. The matrix form of (3.40) is:

[_, _, _,, _31=. [_,, _, _,, _3]

1 1
1

2 2

1

1

According to (3.38)1 the base shape functions j, are given by

N-

if'2

~

¢4

tl'3

1

2

1

1

2

1

2 ¢1

_3
1

or

¢1 = _'1
1 1

+ _q,2 + 5¢4

1

_)3

(3.41)

(3.42)

(3.43)
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Figure 3.9: An elementadjacentto two larger neighbors.
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Figure 3.11 presents the constrained base shape functions ¢i. Relation (3.43) could also be

formally obtained using the general expression (3.39).

3.9 Calculation of the Element Load Vector and Stiffness Matrix

For simplicity, we restrict ourselves to the case of a single equation. In the case of systems

the same procedure is applied for every linear form (3.7) and bilinear form (3.4).

The element load vector and stiffness matrix are defined as:

(3.44)

i,j = 1,..., N, N being the number of degrees of freedom of an element, ¢_ base shape

functions corresponding to actual degrees of freedom _i.

Since constrained shape functions _i are related to the usual shape functions ¢i by a

linear transformation (3.39), b, and/3,j can be expressed as follows:

bi = Z RijLh.K(_')) for i E .hrc ,

jEs(o

5; = Lh,u(¢_) for iEN °,

Bij - Z Z RikRjtBh,K(1/'k,t_t) if i,j • Are,
keS(i)eeS(j)

Bij = Z RikBh,K(_.'k,¢j) if i E NC,j • N a,
kES(i)

(3.45)

Bij = Z RJ kBh,K(d2i,_['k) if i • N%j • N c,
kES(.,)

Bij = Bh.K(_'i, _-'j) if i,j E N a

where 1.,h,K, Bh,K are restrictions of forms (3.7) and (3.4) to the element K, sets of indices

N c, N a, S(i) were defined in (3.36) and (3.39).
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Figure 3.10: Conditions for continuity for a constrained bilinear element.
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Figure 3.11: Constrained base shape functions _;.
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3.10 Constraints in the One-Dimensional Case

In the case of irregular meshes, continuity has to be enforced by means of the constrained

approximation. To fix ideas, consider the generic, one-dimensional case shown in Fig. 3.12.

The approximation on the small elements [-1,0] and [0, 1] must match the approximation

on the large element [-1, 1].

We first choose the scaling factors Ap in (3.18) in such a way that the corresponding

shape functions for the one-dimensional master element have the following form

)co -- 1(1-_)

x, = _-(1+ _)

= / ¢p-1 p=2,4,6,...Xp(_)

t {P-_¢ p= 3,5,7,...

(3.46)

Assume next that all degrees of freedom for the large element are active. The question

is: what degrees of fl'eedom must the small elements take on in order that the functions

supported on the two small elements exactly coincide with shape functions of the large

element?

From the fact that (3.18) is a dual basis to (3.46), we get

_p(xp) = --_pp!= 1 p = 2,3,... (3.47)

and therefore Ap = p!.

The transformation map from [-1,1] onto [-1,0] is of the form

1 1

z = -2 + 2{ (3.48)

with inverse { = 2x + 1. This yields the following formulas for the shape functions

tXv, p = 0,1,2,... For the (left-hand side) element [-1,0] (recall definition of a subpara-

metric element).

(3.49)

exo(z) = -x
eXl(X ) - x + 1

tXp(, ) = 1-(2x+l)' p=2,4,6,...

t)Cp(x ) = (2x+l)P-(2x+l) p=3,5,7,...

and the corresponding formulas for the degrees of freedom are

<t_0, u> = u(-1)

<t_,u> = u(O)
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Figure 3.12: Derivation of the constraint coefficients.
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<t _p,u >= 2;p! dxP - p = 2,3,... (3.50)

Now let u(x) (x = _ for the master element) be any function defined by the shape

functions on [-1, 1], i.e.,
k

_,(z) = _ _,(u)x_(z) (3.51)
q=O

In order to represent u(x) for x E [-1,0] in terms of the shape functions on [-1,0], we

have to calculate the values of the degrees of freedom (3.50). We get

k

<_ _;o,u > = _o(u) <_ _o, Xo > + _ _q(u) <t _o, Xq >
q=l

where

Forp> 9

where

= < Wo, U >

<t _1,, > = _o(_) <t _l,Xo > +_1(_) <t _1, xl > (8.52)
k

+ _ _q(u) <J _1, x q >
q=2

1 k
= "4 < _, u > + "--'2.,tltql- < _q, u >

q=2

tRq 1 = <l _l,Xq >

J 1 ifqiseven

0 otherwise

<1 Wp, u >

k

_o(_) <_,p, xo > + _ ,.(_) <__p, x_ >
q=l

k

= 0+_ tRq_,<qq,u>
q=l

tRqp = <Z_pp,Xq >

_{0 (;)- 1 (_ 1ff+q
2q_ -,

for q<p

(- 1)_'+q q!

2q p!(q -- p)!
for q>p

The same procedure applied to the right-hand side element [0,1] yields the following:

(3.53)

(3.54)

62



The t,'ansformation from [-1,1] onto [0,1]

1 1

with inverse _ = 2x - 1.

(3.55)

The shape functions rXp, p = 0,1,2,...:

rx.(=)
[ 1-(2x-1)P peven

/ (2x-l) p-(2x-1) podd

(3.56)

(3.57)

(3.58)

The d_grees of freedom r_v:

<

< "_o,u> = u(O)

< "_l,u > = u(1)

1"_p, u >= 2Pp! d:cp
(3.59)

Tlre constraints

where

and for p > 2

<
1 1 ¢--,k

"_o,u >= _ < _o, u > +_ < _, u > + 2., _Rqo< _, u >
'¢" q----.2

1 ifq is even"Rqo = 0 otherwise

< '_l,u >=< _a,u >

<

k

re., _ >=< _ "R_p< ¢_, u >
q=2

(3.60)

(3.61)

(3.62)

(3.63)
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where

"Rqp = (r_p, Xq > (3.64)

{0(qp),o q<p= 1

for q >_ p

(3.65)

Finally, the conditions for matching the approximation on one--dimensional master ele-

ment [-1, 1] and on the two small elements [-1,0], [0, 1] can be rewritten as:

P

d_2i = _ ¢pj dRji , i = O,...,p (3.66)
j=O

where the superscript d = l (left) or r (right) distinguishes between the two small elements.

Formula (3.66) relating degrees of fi'eedom of the two elements is equivalent to a correspond-

ing relation between the base shape functions aX'i and ),'i dual to a_i and _;i:

P

Xi = Z dR'J dXJ ' i = O,...,p (3.67)
j=0

Arrays _Rqv and rRqp, q,p = 0,... ,5 are presented in Fig. 3.13.

3.11 Constraints for Two-Dimensional Subparametrie Elements

Since the shape functions for the 2-D master element are defined as tensor products of

the 1-D functions, the results for the 1-D case hold exactly in the same form in the 2-

D situation, the only difference being that the calculated constraint equations have to be

applied to the proper degrees of freedom (see 3.31). It follows from the definition of the

subparametric elements that the constraints coefficients are exactly the same, even when

the elements have curved boundaries. This follows from the fact that the shape functions'

behavior in a subparametric element on a part of its boundary depends exclusively upon the

deformation of the part of the boundary, and therefore, any relation defined for the shape

functions in the generic situation carries over immediately to the case of two small elements

sharing an edge with a large element, so long as the deformation of the edge is identical in

all three elements. The situation is illustrated in Fig. 3.14.

3.12 Constrained Approximation in a Three-Dimenslonal Case

A three-dimensional constrained approximation exploits basically the same concepts as we

developed fox" the two-dimensional case. The constraints, however, in this case have a more

64



r R -.-
qP

n

1

i

1/2

1/2

-1

0

-I

0

-I

1/2

1/2

-1 1/4

0 -3/8 1/8

-I d/16 -t/16

0 -10/'32 10/32

-1 15/64 -20/54

1/4

3/8 1/S

6/16 4/16

10/32 10/32

15/64 20/64

II16

-5/32

-15/64

1/32

-6/_

1/16

5/32 1/32

15/64 6/64

1/64

1/64

Figure 3.13: The constraint coefficients for a sixth order approximation. The unfilled coeffi-

cients are zero.
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Figure 3.14: Illustration of the constraints for the subparametric elements. (after [9])
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complex form. Moreover, there are two different types of constraints: one resulting from

constraining only an edge of the element and the second resulting from constraining the

whole wall of the element.

(a) an element may have a larger neighbor across the wall, Fig. 3.15a

(b) the neighbors across walls are of the same size as the element considered, but the

neighbor across an edge is larger, Fig. 3.15b

These two situations must be considered separately.

3.13 Constraints for a Wall

We construct equations of constraints and transformation to new degrees of freedom and

base shape functions in essentially the same way as we did in the two-dimensional case.

We consider two adjacent cube elements K, and K 1 of a 1-irregular mesh, one of them,

KI, two times smaller than K,. The wall IV/of K I is attached to one quarter of the wall

I,V_ of the larger neighbor, Fig. 3.16. The first condition for continuity of approximation is

that spaces of shape functions Xh(K,) and Xh(KI) if restricted to W! must be identical:

Xh(Kj)lw, = Xh(K,)Iw, (3.68)

and it is satisfied since we accepted the "maximum rule".

In the reasoning below we use two-indices notation for shape functions of K I and K_

which do not vanish identically on IIQ : tL';.,,h', and ¢',J.h'l. Restrictions of these functions to

W/are of the following form (Fig. 3.15)

_iLh',lWt = Xi(x)" X./(Y) i,j = 0,...,p (3.69)
t/',j,t;jlu,'j = daXi(_)" d2ki(q) i,j=O,...,p

where ,ki and d_),i, a2Xi are one-dimensional hierarchical shape functions considered in the

section on "Constraints in One-Dimensional Case," dl, d2 indicate which of the two generic

situations considered there should be applied.

Functions _3ij,l,:,,[lt'l, ¢ij,KIIW 1 constitute two bases of spaces Xh(KI)IW! -- Xh(K_)[%,
therefore there must exist a unique linear invertible relation between them. Using the trans-

formation (3.67) between Xi(x) and g'X(_), and the same for the y-direction we easily find

that this relation is of the form:

P P

¢,.jK, lu'j = Y_ _ d_Rik '_2R.it¢_,t.t,',lwj (3.70)
k=O tt=O
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Figure 3.15: Three-dimensional constrained elements: (a) an element with constrained walls;

(b) an element with a constrained edge.
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Figure 3.16: Two adjacent three-dimensional elements ina 1-irregular mesh having a common
wall.
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which is analogous to formula (3.25) obtained for two-dimensional case.

By exactly the same reasoning as in that case we can show that introducing new degrees

of freedom _,j,1,j by
p p

q$ij,K1 = _-4 _ '''Adl i:_d_A., w_t,h'j • _ki Rej (3.71 )
k=O t=0

we obtain the necessary and sufficient condition for continuity of approximation along the

wall of the form:

(_ij,K 1, Uhlh'l) = (_gij,K,, Uhlh',) (3.72)

for every Uh such that UhIK, E Xh(lfe), tthlh" ! E Xh(l(J).

3.14 Constraints for an Edge

Consider now a situation when a smaller element K! has a larger neighbor across the edge

E l even though the neighbors across the walls adjacent to E l are of the same size as KI,

Fig. 3.17. In this case only the shape functions associated with the edge Ef are involved in

constraints.

Let _',,I,,, _'i,l,j be the base shape functions of K_ and KI which do not identically vanish

on E l . Again, continuity of approximation requires that:

Xh(l(¢)lE ! = Xh(KI)IE 1. (3.73)

The two sets of functions _'/.h',IEj, ¢iJ,jlE I are the basis of the above spaces, and since:

and \i(x), dXi(_) are related by (3.67), we find that

p

¢i,h',lE! "-" E d RiJddJ,h'llEJ"
j-0

(3.74)

(3.75)

By the arguments used before we introduce a new set of degrees of freedom _i,K I such

that:
p

=  nj, (3.76)
j=O

and as a consequence we obtain the necessary and sufficient condition for continuity along

El:

(_;,KI, uhlz,'j} = (_i,h',, Uhlh',) (3.77)

for all uh such that UhlK, E. Xh(Ke), UhlK ! E .Xh(K]).
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Figure 3.17: Two three-dimensional elements in a 1-irregular mesh with a common edge.
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3.15 The Constrained Base Shape Functions

We collect transformations (3.71) and (3.70) obtained for all constrained walls of the element

and all constrained edges not belonging to constrained walls. As a result we end up with

the relation which, after introducing a uniform one-index numbering of degrees of freedom,

can be written in a general form:

= , c
./=l(0

(3.78)

_'i = _i , i • N a

where N c is a set of indices denoting degrees of freedom associated with constrained wails

and edges of the element, N_-indices of the remaining degrees of freedom,/(/)-indices of _i's

contributing to a given _j in (3.78). Coefficients Rij are expressed by a_R,_j, _2Rij in a way

indicated by (3.76) or are just equal to aR 0 if constraints result from (3.78).

By the arguments used before the base shape functions ¢, corresponding to _, are given

by a linear transformation transpose to (3.78):

= Ri g,j , ie N
, 5_s(o

_ _,_ , i • N °

(3.79)

where S(i)= {j • N_ti • I(j)}.

3.16 Interpretation of _i • Calculation of the Load Vector and

Stiffness Matrix

As in the two-dimensional case, degrees of freedom _i have a simple interpretation: to

compute (_,,_,), _b E Xh(K) we can uniquely extend the function _b as a polynomial to

constrained walls and edges extended such that they coincide with walls and edges of the

anticipated larger neighbors. Then, appropriate degree of freedom Ti of the larger neighbor

should be applied for the extension of ¢. All generic situations are presented in Fig. 3.18.

The algorithms for transforming the usual element load vector and stiffness matrix to

those corresponding to _i's are exactly the same as in the two-dimensional case. The only

difference is that they use more complex formulas (3.79).

Also, the arguments that we used to extend the concept of constrained approximation to

two-dimensional subparametric elements apply in the three--dimensional case.
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Figure 3.18: Examplesof three-dimensionalconstrainedelements.

73



3.17 Concluding Remarks on Constrained Approximation

• A formal definition of an element states that it is a triple:

{l(,Xh([_), {_i}i=1 ..... N}, (3.S0)

where K C _:(_3) is a domain of the element, Xh(K) the space of shape functions,

{_}i=1 .....N a set of linear functionals on Xh(K) called degrees of freedom.

From this point of view the approach that we propose for enforcing continuity on 1-

irregular meshes is equivalent to constructing a new element: we define new degrees of

fi'eedom.

• A finite element code using constrained elements must include only three non-

traditional algorithms:

- a procedure identifying kinds of constraints for a given element,

- an algorithm transforming the usual load vector and stiffness matrix to those

corresponding to actual degrees of freedom _3i,

- the procedure transforming the finite element solution in terms of _i's (obtained

from the solver) to values of usual degrees of freedom, i.e., the procedure perform-

ing the calculations indicated by (3.36) or (3.78).

These three algorithms involve complex logical operations; however, once they are coded,

they may be used as "black boxes" by a user not familiar with their content. The rest of the

code is unaffected by the constrained approximation and therefore it may be developed in a

standard way.

3.18 Some Details Concerning the Data Structure

In the classical finite element method, elements as well as nodes are usually numbered consec-

utively in an attempt to produce a minimal band within the global stiffness matrix. When

the program identifies an element to process its contribution to the global matrices, the

minimal information needed is the node numbers associated with the element. Adaptive re-

finement and unrefinement algorithms require much more information on the mesh structure

than the classical assembly process.

First of all, we introduce the notion of a family. Whenever an element is refined a new

family is created. The original element is called the father of the family and the four new

elements are called its sons. Graphically, the geneology on families can be presented in a

family tree structure as illustrated in Fig. 3.19.
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An examination of refinement and unrefinement algorithms (see [7] for details) reveals
that for a given elementNEL, one must haveaccessto the following information:

• elementnodenumbers

• element neighbors

• the three structure information, including:

- number of the element family

- number of the father

- numbers of the sons

- refinement level (number of generation)

For a given NODE we also require,

• node coordinates

• values of the degrees of freedom associated with the node

In general, some information is stored explicitly in a data base consisting of a number of

arrays, some other information is recovered fi'om the data base by means of simple algorithms.

A careful balance should be maintained between the amount of information stored (storage

requirements) and recovered (time).

The following is a short list of arrays used in the data base:

1. The tree structure is stored in a condensed, family-like fashion [26], [7] in two arrays

NSON(NRELEI)

NTREE(5,MAXNRFAM)

where NRELEI is the number of elements in the initial mesh and MAXNRFAM is the

anticipated maximum number of families. For an element NEL of the initial mesh,

NSON(NEL) contains its first son number (if there is any). For a family NFAM,

NTREE(1,NFAM) contains the number of the father of the family while the other four

entries NTREE(2:5, NFAM) are reserved for the "first-born" sons of the sons of the

family (the first-born "grandsons" of the father).

2. The initial mesh neighbor information is stored explicitly in array

NEIG(4,NRELEI)
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Initial Mesh Elements
QeneTation

o ,f,o'-- l
Sons 4-_5 6 7 _. ) 8=),'9 1 11_ |

Grandsons 12==_13='_14 1.5 _ 20=_-1="2-==_23

3 Oreatgrandsons 16-_17-_18-_19

Figure 3.19: A tree structure and the natural order of elements: 4, 5, 12, 13, 14, 16, 17, 18,

19, 7, 8, 9, 10, 20, 21, 22, 23, 3. (after [9])
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containing up to four neighborsfor eachelementof the initial mesh(elementsadjacent
to the boundary may havelessneighbors).

3. For every active element, up to nine nicknames are stored in array

NODES(9,MAXNRELEM)

where MAXNRELEM is the anticipated maximum number of elements.

For a regular node, the nickname is defined as

NODE*100 + NORDER

where NODE is the node number and NORDER the order of approximation associated

with the node.

For an irregular node, the nickname is defined as

NORDER

where NORDER is again the order of approximation corresponding to the node.

4. For a particular component IEL of a vector-valued solution, the corresponding degrees

of freedom are stored sequentially in array

U(MAXNRDOF,IEL)

where MAXNRDOF is the anticipated maximal number of degrees of freedom. Two

extra integer arrays are introduced to handle the information stored in array U. Array

NADRES(MAXNRNODE)

contains for every node, NODE, the address of the first from the degrees of freedom

corresponding to NODE in array U. If K = NADRES(NODE) is such an address, the

address for the next degree of fl'eedom can be found in

NU(K)

and so on, until NU(K)=0, which means that the last degree, of freedom for a node has

been found. The parameter MAXNRNODE above is the anticipated maximM number

of nodes.

5. The node coordinates are stored in array XNODE

XNODE(2,MAXNRNODE)
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The rest of the necessaryinformation is reconstructed from the data structure by means of

simple algorithms. These include:

- calculation of up to eight neighbors for an element

- calculation of local coordinates of nine nodes for an element determining its ge-

ometry (the irregular nodes coordinates have to be reconstructed by interpolating

regular nodes coordinates)

- recovery of the tree-structure related information, e.g., level of refinement, the

sons' numbers, etc.

- an algorithm establishing the natural order of elemenls

During the h and p refinements and unrefinements, both elements and nodes are created

and deleted in a rather random way. This makes it impossible to denumerate them in a

consecutive way, according to their numbers (for instance, as a result of unrefinements some

numbers may be simply missing). Thus a new ordering of elements has to be introduced

which is based on some scheme other than an element numbers criterion. In the algorithms

discussed here, we use "the natural order of elements" based on the initial mesh elements

ordering and the tree structure. The concept is illustrated in Fig. 3.19. One has to basically

follow the tree of elements obeying the order of elements in the initial mesh and the order

of sons in a family.

The natural order of elements may serve as a basis for defining an order for nodes and,

consequently, for degrees of freedom, when necessary.

For a detailed discussion of the data structure as well as a critical review of different data

structures in context of different h-refinement techniques, we refer again to [7].
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4 Adaptivity

The main advantage of an h-p finite element method is the possibility of adapting the mesh

to features of the approximated solution. Adaptivity should lead to enriching the current

mesh only where it is needed, i.e., where the accuracy is not sufficient and where the new

degrees of freedom cause the best improvement of the solution.

There are two basic steps in the process of adapting the mesh. The first is the a posteriori

estimation of errors of the current approximation. This estimation provides the necessary

local information about the quality of the solution required to drive the adaptive strategy.

In the second step, based on the knowledge of the errors, we refine the mesh: break or enrich

the elements. The rules for making the decision as to which elements should be refined or

enriched play the key role in generating optimal meshes. They are usually referred to as

adaptive strategies.

In the following, we first present error estimation techniques which have been imple-

mented for the compressible Navier-Stokes equation. Then we discuss extension of these

techniques to calculate the directional adaptation indicator. The h-p mesh adaptation

strategies axe described in the last subsection based on these indications. Note, that the

error estimation and h-p adaptive techniques were developed in the previous year, while the

directional adaptation indicator is a recent development in this project.

4.1 Error Estimation Techniques

In general, there are two major classes of error estimation techniques: interpolation error

estimates and residual error estimates. The former group of methods, interpolation methods,

provide a rather inexpensive approach for estimating the numerical error. This approach,

however, is usually not very accurate and only provides a relative indication of where large

errors exist. The latter class of methods, residual methods, are typically much more accu-

rate but are also much more expensive to use. During the course of this project we have

experimented with both classes of methods.

4.1.1 Interpolation Error Estimate

This method of error estimation employs well known a priori estimates of the interpolation

error of finite element approximations. Such estimates axe given by the following formula:

I1' - ull]o,K = c Ilulll, (4.1)
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where u] is an interpolant of u. Of course we are not interested in the accuracy of the

possible interpolation of the exact solution u, but rather in the accuracy of the finite element

approximation of the problem Uh. Still, numerical experiments indicate that the errors given

by (4.1) can be considered a rough indication of the accuracy of Uh and can serve as a basis

for mesh adaptation.

The major advantage of this method is that it is computationally inexpensive, problem

independent, and easy to implement. Yet its rather poor quality is a reason that we use it

only if other techniques are not available or if we need only a very rough estimate of the

error.

4.1.2 Residual Error Estimate

The idea behind residual a posteriori error estimates can be outlined as follows. We substitute

the existing finite element approximation Uh into the original statement of the problem being

solved. Since uh is not an exact solution we obtain a certain residual rh which could be

measured in a suitable global norm. For instance, it could be the norm of the space dual to

the space containing the solution X:

IIr ll= sup (rh,,___J) (4.2)

for which we are guaranteed that it exists. The exact solution of our original problem is,

however, usually unavailable and we can only try to estimate the value of this expression.

The techniques leading to such an approximate evaluation of lira I[ are referred to as residual

error estimates. The)' express I]rhll as a sum of element contributions which we call local

error indicators and they also reflect the local accuracy of the solution (i.e., for each element).

The element residual method was originally developed for symmetric elliptic bound-

ary value problems. The method was recently extended to a class of nonsymmetric but

symmetrizable problems which includes compressible flow problems [24]. In the following

discussion we will provide details for the nonsymmetric version of the method and give only

a general outline of the method fox" the symmetric case. For details about estimating ex-

pression (4.2) by local element contributions, we refer to [25]. The presentation below is

extracted from [24].

Element Residual Method

Given a domain fl C l N (we assume N = 2 for notational simplicity) we consider a general

variational bdundary value problem in the form
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where

Find u E X such thatB(u, v) = L(v) for every v E X

X=H'(fl) = H'(fl) x...xH'(fl)

n times

(4.3)

B(u,v) - _ Bij(ui, vj) (4.4)
i,j=l

n

j=l

with the bilinear forms B 0 and linear forms Lj defined as (omitting superscripts for nota-

tional convenience)

fn { 2 Ou OvB(u,v) = __, a_oxtozk
k,g= 1

+

Ou 2 Ov }+ __,bk-_xkv+__,dtu-_xt+cuv dx
k=l g=l

ov }b,-ff_s v + dsu-_s + couv ds

(4.5)

£{ _ ,.,.,°"}L(v) = fv + __,ge-d-Z?_. dx
l=l

(4.6)

+ fon.f, vds

For each pair of indices i,j = 1,..., n, akt, bk, dr, c, f, gt are functions specified in fl and b0,

d,, c_, f, are functions specified on the boundary Off. The normal and tangential derivatives

on the boundary are defined as

Ou Ou Ou

On - OXl nl + _x2 n2

Ou Ou Ou

oxt-n2)_. + --nlox20"--_

(4.7)

where (ha,n2) are components of the outward normal unit vector n.

81



Systems of type (4.3) include not only classical elliptic equations of second-order but

also arise naturally as "one time step problems" from different time discretization schemes

applied to parabolic or hyperbolic equations. The boundary integrals in (4.5) permit the

implementation of different boundary conditions (including Dirichlet boundary conditions

via the penalty method).

Replacing X in (4.3) with a finite dimensional subspace Xh,p of X we arrive at the

approximate problem

Find uh,p E Xh,p such that (4.8)
B(uh,p, v) = L(v) V v e Xh,p

Indices h and p refer here to the use of an arbitrary h-p adaptive finite element (FE) meshes,

with locally varying mesh size h and spectral order of approximation p.

It is our goal to propose and investigate here a general method for estimating the relative

residual error corresponding to (4.8). More precisely, considering the enriched space Xh,p+l

corresponding to the same mesh but with local order of approximation uniformly increased

by one, we define the relative residual error as

sup IB(uh.p,v)- L(v)l (4.9)
v_X .p+, Ilv[I

The choice of norm Ilvll is unfortunately not unique. Two important special cases are,

however, of interest: the symmetric case, when B is symmetric and positive definite, and the

symm_trizable case when B can be made symmetric by an appropriate change of variables.

Symmetric Case

When the bilinear form B is symmetric and positive definite and the energy norm

IlvllE= B(_,_) (4.10)

is selected in (4.9) the residual error is equal to the relative error" between uh,p and uh,p+l,

the FE solution corresponding to the enriched space and measured in the energy norm.

sup
IB(uh,p, v) - L(v)l

= II"h,.- '_h,.+,llE (4.11)
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The principal idea behind the proposederror estimate is to interpret (4.11) asa variational
formulation of an elliptic problem, transform the bilinear form B into the typical form for

elliptic problems, and finally apply the element residual method presented in [25].

Formally, we proceed as follows:

Step 1:

Step 2:

Transform formulas (4.5) and (4.6) into the typical form for elliptic equations.

j_ { Ou Ov= _ akt Oze Ozk
k,l=l

+ Z(b_- d_)_-__+ c- Z__/"_ d_
k=l I=1

+ f_ b,-_sv+dsu-_s + c,+t=a_-'dtnt uv ds

vdz + f, + __,gtnt vds
f2 l=l

(4.12)

Apply the element residual method to the modified bilinear and linear forms result-

ing in the estimate

1

Iluh,p- Uh,p+alIE _< lieu lIE.K2
K

where the error indicator function _1," is the solution to the local problem

(4.13)
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Step g:

o (K) such thatFind _oK E Xh,p+l

BI,-(_j,., v) =

j=l i=l

0 ( o Oui_ • Ou_
i=l k,l=l k=l

i=l k,l=l i=l k,/=l

,,.oo,:i+Egln,
I--1

(4.14)

for every V E X°h,p+ l (K )

Here X°h,p+l(K) is the kernel of the h-p interpolation operator defined on the ele-

ment enriched space Xh,p+l(If) or the so-called space of element bubble functions

and the element bilinear form BK is defined as the element contribution to (4.10).

Finally, the symbol I ] denotes the average flux defined along the interelement

boundary and evaluated using both the element and the neighboring elements val-

ij (if they are discontinuous). The element energyues of derivatives and coefficients akt

in (4.13) is defined using the element bilinear form Bh'.

Integrating by parts transforms the element bilinear form and the right-hand side

of the local problem into a form consistent with the initial formulas for B and L.

Thus, we arrive at the following formulas
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where

n

B,,.(_,v) = G B_(¢,v_)
i,j=l

L_(,,) = _ Li.(vs)
j--1

f+ ds
aoK\oa-- gent qpv

d Ov

2

-t- o/0h.non fsvds

The final form of the local problem is derived as follows:

Find _h" E X_,p+I(K) such that

(4.15)

(4.16)

B1_(_'u, v) = Lu(v) - Bu(uh,_, v)

+ £ f,,..,,o ,..,Z,,,,,
i,j=l =i

vjds

(4.17)

Nonsymmetric and Symmetrizable Problems

Formally, formula (4.13) can be used for nonsymmetric problems as well, as long as the local

element bilinear forms BK are positive semidefinite, i.e.,

Bt,'(_K, _K) > 0 (4.18)
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This happensif the symmetric contributions to BK dominate the unsymmetric ones (result-

ing usually from the first-order terms). The global bilinear form B is then automatically

semipositive and, with the correct boundary conditions, it is positive definite. This guaran-

tees the well-posedness of the problem.

Another interesting case is when the bilinear form is nonsymmetric but it is symmetriz-

able in the sense that a matrix-valued function Ao(z) exists (the so-called symmetrizer

introduced earlier) such that a new bilinear form/3 defined as

B(u, v) = B(u, Aov) (4.19)

is symmetric.

If, in addition, the symmetrized bilinear form/3 is positive definite, then the error esti-

mation technique can be extended to this case as well.

Introduction of the symmetrizer does not effect the construction and solution of the local

problems. It only helps identify the norm for the space Xh,p+l in (4.9) and affects the

evaluation of the error estimate. Using the same definition of element bilinear and linear

forms BI,, Lt,, we proceed as follows:

Step 1: Use the orthogonality of the residual to the Xh.p space,

B(lth,p,V)- L(v)- B(lth,p,_b)- L(¢) (4.20)

Step 2:

where

¢ = v - IIh,pv (4.21)

where 1-ih,p denotes the h-p interpolation operator (see [25]).

Decompose the bilinear and linear forms according to formulas (4.12) introducing

the average flux interelement boundary terms

B(uh, , v) - L(v)

(4.22)
CJds

Step 3: Introduce the solutions to the local problems

B(uh,,,,v) - L(v) = q's')
K

where _bl,- is the restriction of _b to element K.

(4.23)
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Step .4: Introduce the symmetrizer and use the Cauchy-Schwartz inequality for the sym-

metrized form to estimate the error

B(u_,p,,,) - L(_) = _ B;, (_s-, A0ao'¢s-)
K

= _ BK(_h',AffI¢h ) < _ B(_K,_oh')½Bt,(Ao'¢h',Ao'¢K) ½
K K

I

< C Bs(_,s-,Ao_s-) B(Ag_v,v) ½

(4.24)

Here C = max1,-Ca- where for every element K, CK is identified as the norm of

(1 - Hh.p) operator with respect to the element energy norm defined as

2IlvllE,;,-= BK(Ao'v, v) (4.25)

(see [25] for a detailed discussion of C). For undistorted meshes C is close to

one (independent of the order of approximation) and in practical calculations is

neglected.

Identifying the global energy norm for v in (4.9) as the sum of (4.26) we arrive at

the final estinaate of the form

1

sup IB(Uh,,, v) -- L(v)l < BK(_h. AoWK) (4.26)
v_X_,., Ilvll -

Example: Taylor-Galerkin Method for Euler Equations

Recall that the variational formulation of the Taylor-Galerkin method is of the general form

(4.3) with the bilinear form defined as follows.

B (Un+" V) = _ vTu"+'+-'2 -- k-_zk] AkA' -_xt dx
k,l=l

• (4.27)
+ boundary terms

The form of boundary terms present in the formula for the bilinear form depends on boundary

conditions.

The formulation is nonsymmetric. However, it is known (see [16,14]) that there exists a

symmetrizer A0 = A0(u), see Fig. 2.1 (Hessian of the entropy function for Euler equations),
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such that

1. Ao=ATo >0

(4.28)

2. (AoAi) r = AoA_ >_0

Based on (4.28),one can easilyverifythat (with a proper treatment of boundary conditions)

the bilinear form

B(U, V) = B(U, AoV) (4.29)

is symmetric, provided the derivatives of the symmetrizer Ao are negligible, i.e.,

0

_x Ao_0 (4.30)

Example: The Momentum Step of the Navier-Stokes Equations

The momentum step in the two-step procedure outlined in Section 2 involves solving the

system of equations:

2 1

rn_ +' - fl&t X "-"+' " " (4.31),_.,',J,, = "5 + (1 - _),xt _ %,
i=1 /=1

Equations (4.31), if rewritten in terms of the velocity components, reduces to a system of

two symmetric, elliptic equations. Unfortunately, in order to comply with the conservative

form of the equations, (4.31)" must be solved in momentum components.

The variational fornmlation of (4.31) does not result in a symmetric problem but the

bilinear form may be symmetrized using the symmetrizer

1

Ao -

P

as this transforms the problem to a symmetric formulation in velocity components.

Example: The Energy Step for Navier-Stokes Equations

The energy step involves solving the equations:

e"+' _t_ 'ij-_+"j"+'+
/=1 j=l ,t ] ,i

= e_ + (1 - _)At _ _,;.u2 + ,_r:
i---1 j----1 ,i

(4.32)
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The variational formulation of (4.32) is not symmetric. However,sincerewriting (4.32) in
terms of temperature T results in a symmetric diffusion equation, and since e = c,_pT + rn_/

2p, the factor A0 = lip is a suitable symmetrizer of the problem.

The extension of the element residual error estimation to the implicit slash explicit

method (which is based on one-step Taylor-Galerkin Formulation) is straightforward: first

we calculate the error indicator function by solving the local problem (4.23) for each element,

then use (4.26) to compute the error indicator for that element. The bilinear form is obtained

from the variational formulation of the problem as before, and is of the general form (3). The

same symmetrizer used for Euler equation can also be applied for Navier-Stokes equations

(cf Hughes' paper). It should be noted that, although the algorithm extends in a neutral

way, the theoretical work for the Navier-Stokes equation is still not complete.

Numerical Examples

In this section, two example problems illustrating these techniques of error estimation are

presented. Note, that these are rather simple examples designed to illustrate the basic

ideas presented here on relatively worse meshes. More practical applications we presented

in Section 7. The results take the form of plots of the error estimates and effectivity indices

as well as global effectivity indices and standard deviations. These quantities are defined as

follows:
OK

Illellls" (4.33)

where 7K is the effectivity index for element K, 0K is the estimated error and IIl lll - is
the actual element error in the coarse mesh approximation (comparing the coarse mesh

approximation with either the analytic solution or the approximate solution on a mesh

of uniformly increased polynomial order). Additionally, we introduce a discrete measure

(weight) wh- defined according to

Illeltl -
= iilelll (4.34)

With this definition, the global effectivity index becomes:

- illell12- illelllZ - (4.35)
K

Now classical statistics suggest a standard deviation _r (with respect to the measure) as a

method to quantify the ability of the estimates to predict an appropriate distribution of

error. The standard deviation is defined as:

crY- _] (3'_ -3 '2) _wh- (4.36)
K
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In order to eliminate an3' global constants that may be missing from our estimates, we

normalize the element effectivity indices by dividing them by the global effectivity index:

O,,,: • 7 -1 (4.37)
= Illelll 

which results in a standard deviation defined according to:

_2 = X (5'_-- 1)_wA " (4.38)
K

Example I: Inviscid Flow Over a Blunt Body

We used the Taylor-Galerkin method described in Section 2 to model the flow over a blunt

body with Mach number 3t = 6. Figure 4.1 shows the density contours of a steady-state

solution obtained on a uniform mesh of 16 x 16 linear elements. Figures 4.2a and 4.2b present

distributions of the error indicators 0h" (obtained using (4.26)) and the normalized effectivity

indices Sh" (4.37). Since the exact solution to the problem is not available, the exact errors

are not known. For this reason we comlSuted the effectivity indices 71," = eh'llllelIl ,', using

instead of the true errors Illellls', the errors understood as a difference between the actual

finite dement solution and the solution obtained by performing one time step on the mesh

enriched to quadratic elements. It can be observed that the error indicator correctly picked

up the shock as the maximum error region. It is important to note that figure 4.2.6 presents

effectivity index 7K, not, the error indicator. Due to the presence of the value of error in the

denominator of the definition of $_,- (4.37), the effectivity index will often exhibit overshoots

in the areas of low error (division by small numbers). That explains presence of high values

of effectivity index in front of the low shock or in front of the plate in the next example.

The global effectivity index for this problem was 7 = 7.7 and a standard deviation of local

effectivity indices _ = 1.67.

Example _: Viscous Flow Over a Flat Plate

The two-step algorithm was also used to model the viscous flow past a fiat plate.

problem being modeled was designed by the following data:

• Mnch number, 3t = 3

• Reynolds number, Re = 500

• Free stream temperature Too = 80*K

• The temperature of the plate, T,_ = 228'K

The
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DENSITY

5.625

4.5

1.875

0.75
MIN--0.9233_

MAX=5.3883

Figure 4.1: Flow over a blunt body, M = 6. Density contours.
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ERROR=2.1418225

D.O.F= 289

Figure 4.2: (a) Flow over a blunt body. Distribution of error indicators.
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! I

I

I

MIN=O. 166661

MAX-ffi8.4579004

D.O.F= 289

Figure 4.2: (b) Flow over a blunt body. Local effectivity indices.
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The finite dement mesh is shown in Fig. 4.3. We applied initial h and p refinements to

introduce appropriate layers of small higher order (up to p = 3) elements along the plate

to resolve the boundary layer phenomena. Different shades of gray in Fig. 4.3 correspond

to different orders of approximation. Elements with only their sides shaded are anisotropic

elements with a higher order approximation in the direction perpendicular to the plate only.

The solution of the fiat plate problem in terms of density contours is presented in Fig. 4.4.

Since the two-step algorithm consists of three linear steps, we performed an error estima-

tion for each step. Similarly, as in Example 1, the exact errors involved in effectivity indices

analysis were replaced by the errors obtained as differences between the actual solutions of

Euler, momentum and energy steps, and the corresponding solutions obtained by enriching

the order of approximation by 1 throughout the mesh, and performing one Euler or momen-

tum, or energy time step, respectively. These differences were then measured in the energy

norms defined by the bilinear forms associated with these steps, symmetrized as described

in previous sections.

Figures 4.5, 4.6, and 4.7 present distributions of the error indicators and local effectivity

indices for the three steps of the two-step algorithm. The global effectivity indices 7 and

standard deviations of local effectivity indices, _', in this problem were as follows:

Euler step "r= 18.7 , _ - 6.2

momentum step 7=25.9 , _=5.8

energy step -y -- 3.8 , _ -- 7.4

4.1.3 Relative Error Estimate

The idea of the relative error estimate is to compare the finite dement solution on a current

mesh with a solution obtained on an enriched mesh and to measure the difference between

the two solutions in a suitable norm. The enrichment of the mesh is done by raising the

order of approximation of all dements by one. Of course, solving the problem on the enriched

mesh is much more expensive than obtaining the original solution, so the method apparently

does not seem very reasonable. However, if the original solution is a result of some expensive

iterative process (such as, for instance, converging to a steady state solution in the case of

viscous flow problems), then performing a single extra linear step on an enriched mesh is not

a significant part of the total cost of the computations. In addition, solving of this problem

can be performed with an iterative equation solver with a very good initial guess and with

a very limited number of iterations (limited even to just one iteration).

As a norm measuring the difference between the two solutions, one can use the energy
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Figure 4.3: Flat plate problem. An h-p finite element mesh.
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Figure 4.4: Flat plate problem. Density contours.

95



I
i i
J l
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ERROR=0.0961987

D.O.F= 958

Figure 4.5: (a) Flat plate problem. Error indicators for the Euler step.
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Figure 4.5: (b) Flat plate problem. Local effectivity indices for the Euler step.
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ERROR---0.0154444

D.O.F= 396

Figure 4.6: (a) Flat p]ate problem. Error indicators for the momentum step.
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Figure 4.6: (b) Flat plate problem. Local effectivity indices for the momentum step.
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Figure 4.7: (a) Flat plate problem. Error indicators for the energy step.
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Figure 4.7: (b) Flat plate problem. Local effectivity indices for the energy step.
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norm in the case of symmetric problems, or the norm defined by the symmetrized bilin-

ear form of the original problem in case it is nonsymmetric but symmetrizable. With such

choices of norms, the element residual method discussed in the previous section is an approx-

imation of the relative error estimate. In fact, the element residual method approximates

errors defined by the relative error estimate by expressing them in the form of local element

contributions which are evaluated without actually solving the problem on an enriched mesh.

4.2 Directional Adaptation Indicator

The error indicators calculated from the element residual method have been used success-

fully for the h-refinement for a number of hypersonic inviscid and viscous problems. Dur-

ing the last year of this project, we have also implemented directionally-dependent error

estimate schemes applicable to the h-p compressible flow solver. These directional adap-

tation indicators will be discussed in this section. The current h-p data structure allows

two kinds of mesh adaptation: h-refinement (refine/unrefine elements) and penrichment

(isotropically/ansitropically increase the spectral orders of elements). Although the present

h-p data structure only allows directional p-enrichment, the methodology discussed here is

applicable to both directional h-refinement and penrichment in two- and three-dimensional

problems.

It should be noted here that, in general, there exist no formal definition of directional error

estimate - error norms used in the adaption process are defined in a full three-dimensional

or two-dimensional spaces. The goal of our research is to provide directional adaptation

indicator, which can choose an optimal refinement/enrichment direction. By optimal we

understand a direction which provides maximum reduction of error norm due to a directional

refinement/enrichment.

According to this definition, the most natural way of defining directional adaptation

indicator would consist of the following steps:

1. try to refine/enrich the element in each of master directions (two or three depending

on problem dimensionality),

2. for each trial direction, estimate the error after the refinement,

3.. choose the adaptation direction which provides greatest error reduction.

The above method, although formally correct, would be computationally too expensive.

For practical purposes, we adopt two approaches which provide the directional adaptation

indicator as a relatively simple and inexpensive extension of basic error estimation proce-

dures. Construction of such an indicator is presented below. For the sake of clarity, we focus

on a two-dimensional case. Extensions to three dimensions are immediate.
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The first approach is based on the element residual method. Recall that the error in-

dicator function _oK is computed based on the element enriched space, Xh,I,+I(K). This

function can be effectively used as an indicator to determine the directionality of the error

for that element. A natural choice is to use the norm of the directional derivative of the

error indicator function in each coordinate on the master element

/* ( 0_K)_dz , / (0_K),dz (4.39)
II o llgj,- and Iko..,llo.K-Ja 

as the directional indicator. The actual refinement/enrichment direction is that of maximum

norm of derivative of error function. This procedure is rather intuitive and theoretically

unexplored, however, it has received a consistent support among researchers in the area

of error estimation. The effectiveness of this directional adaptation indicator can only be

confirmed by numerical experiment.

The second approach is based more on interpolation error estimator. In particular, it

focuses on different contributing components of the semi-norm of the solution:

IVllj¢ = 2= IIU llo.x 4-IIU.,llo.x

For practical purposes, the exact solution u can be replaced with the finite element

solution U. Then, to determine the possible enrichment directions to improve the quality of

the solution, one can utilize the norms of directional derivatives of the solution

aU 2 8U 2

Note that these values are only the local properties - they represent, for each element, the

directional variations of either the error function or the solution. By selecting one of these

norms and normalizing the _r/-derivatives with respect to the sum of the two derivatives, a

directional adaptation indicator can be defined as

¢K,I = f°x(s°'_ )2dz (4.41)

fax [(sa-_ )2dz 4- (8_-_,_ )2] dz

or
oU

eg__ fag('_-_ ) dz (4.42)

The normalization gives _g_ a value between 0 and 1, with the "indication" of enrichment

in _- or _/-direction according to whether the values is close to 0 or 1, respectively.

In practice, we first use the element residual method presented in the previous section to

determine whether an element needs to be enriched. If the residual error for an element ex-

ceeds the user specified threshold value, we then compute the direction adaptation indicator
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defined above. According the user selected values for/,1 and b2, where 0 _< bl < b2 _< 1, the

element is enriched as follows:

• anisotropically enrich in _-direction if 0 < _Kn < bl

• anisotropically enrich in T-direction if b2 < _Kn _< 1

• isotropically enrich in both directions if/,1 _< _Kn <_ b2

The values of bx and b2, which control the directionality of the p-enrichment, are currently

being selected based on numerical experience with typical values ranging between 0.2 through

0.4 for bl and 0.6 through 0.8 for b2.

Numerical Ezample: Carter's Flat Plate Problem

The directional adaptation indicator described above has been applied to the Carter's flat

plate problem. For this problem we have converged the solution on an initial linear graded

mesh with two levels of h-refinements as shown in Fig. 4.8. The corresponding density

contours are also shown in Fig. 4.9. A map of the error indicator, 0K, calculated by the

element residual method (as presented in Sec. 4.1) is shown in Fig. 4.10. Note, only the

elements with error indicator values, OK, greater than the threshold value (10 -s for this

example) are considered for enrichment. Fig. 4.11 shows the corresponding plot of the

directional adaptation indicator, _Kn, calculated from the directional derivatives of the error

indicator function in equation (4.41). Note that the elements with 0K less than 10-5 (the

ones not to be enriched) are not shaded in the plot. The next two figures, 4.12 and 4.13,

present the resulting meshes after one p-enrichment pass for the values of (bl, b2) set to

(0.2,0.8) and (0.3,0.7), respectively.

Similar estimations were performed using the directional adaption indicators based on

solution gradients. The corresponding plots of directionality indicator _Kn and the corre-

sponding enriched meshes are shown in figures 4.14 to 4.16, respectively.

A careful study of the above results clearly shows that both proposed directional indi-

cators perform a good job of suggesting directional p-enrichment: isotropic at the plate tip

region and normal to the wall within the developed boundary layer. It seems that directional

indicators based on the interpolation error estimate (solution gradients) behaves in a more

consistent fashion than directional indicator, based on residual error estimate. This is prob-

ably because the solution of the local residual error estimation problem is more sensitive to

element size and boundary conditions than the actual solution of the problem.

Note that the well-known low effectivity of interpolation error estimators is not a problem

in this case, because we are using the directionality indicator to choose between different

enrichment directions, and not to estimate the actual directional error.
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PROJECT: carfl_ie - MESH - PIILOW-CfJ

1 2 3 4 5 6 7 8
D.O.F-742

Figure 4.8: Carter's flat plate problem: Mesh with second level refinement.
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PROJECT: canl_ie DENSITY PHLOW-C/2D

MIN=0.496923

MAX=I.S876155

Figure 4.9: Carter's problem: Density Contours.
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PROJECT: cartl_ie ERROR MAP PHLOW -C/2D

0 I 0.02 O.O5
I

enrichment threshold OK

OK = 10 -5

0.08 0.1

MIN=0.274E-06

MAX--0.001255

ERROR NORM=0.0

D.O.F=742

Figure 4.10: Map of the error indicators based on the element residual method.
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PROJECT: cartl ie DIRECTIONAL ADAPTATION INDICATOR PHLOW-C_D

..........
4).1 0.I 0.4 0.8 1

MIN---0.1

MAX=0.9123463
D.O.F=742

0,,,. < 10 -s

enrich I _ and 17enrich I 17enrich I_n.richno
I

Figure 4.1I: Map of the directionaladaptation indicatorbased on the residualerrorfunction.

(User specifiedvalues of bl and b2 control the directionof p-enrichment)
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PROJECT: canl_ic - MESH - PHLOW-C/2D

l 2 3 4 5 6 ? 8 D.O.F=2258

Figure 4.12: Enriched mesh according to residual-based _K,: /h = 0.2, b2 = 0.8
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PROJECT: cartl_ie - MESH - PHLOW-C/2D
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Figure 4.13: Enriched mesh according to residual-based Sr,: /h = 0.3,/)2 = 0.7
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PROJECT: cartl_ie DIRECTIONAL ADAPTATION INDICATOR PHLOW-Ct.

-0.1 0.1 0.4 0.8 1

MIN--0.1
MAX=0.99891z

D.O.F=742

Figure 4.14: Map of the directional adaptation indicator based on the solution gradients.
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PROJECT: cartl_ie - MESH - PHLOW-Ci2D

1 2 3 4 5 6 7 8
D.O.F=2080

Figure 4.15: Enriched mesh according to _r, baaed on solution gradient: /h = 0.2, b2 - 0.8
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Figure 4.16: Enriched mesh according to _x, based on solution gradients: bl = 0.3, b2 = 0.7
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4.3 Adaptive Strategies

Once the distribution of errors is known, the decision must be made as to which elements

should be refined. The h-p data structure allows two kinds of refinement: breaking elements

(h-refinement) and enriching their spectral orders (p-refinement). As mentioned previously,

the best improvement of the accuracy of finite element approximations can be achieved

if a combination h- and p-refinements are performed. The problem of an optimal choice

between h and p is, in general, still an open question. In the case of viscous flow problems,

numerical experience suggests that p-enrichment is most desirable in boundary layer zones

while in the rest of the computational domain the best choice is a linear approximation

with h-refinements. The procedure of adapting meshes that we use in practice consists of

performing exclusively h-refinements for steady state solutions until all the flow features have

been resolved. Then, at the last stage of solving the problem, we enrich elements along the

solid wall boundaries to provide high resolution of the viscous features of the flow, such as

the skin friction and the heat flux.

As an adaptive strategy for h-refinements we adopted the well known strategy of equili-

brating errors which leads to optimal meshes in the case of elliptic problems. The procedure

of adapting a mesh based on this strategy consists of the following steps:

1. Integrate the solution forward in time until steady state is reached.

2. Determine the distribution of the error indicators e_, i - 1,..., N, N being the number

of elements.

3. Refine the elements with the error larger than a certain percentage ol of the maximum

error emax:

ei _ oi • emax

and unrefine the elements with errors less than o2 • emax.

4. Go to 1.

The parameters ol and 02 are user-specified and their values are assigned based on

numerical experience. One practical selection of ol and o_ is based on a percentage of the

current number of elements to be unrefined and refined respectively. The general guideline

is that in the case of flow problems, one should be rather generous with refinements and

conservative with unrefinements. If smaller (refined) dements do not entirely cover shock

regions, e.g. a shock across elements with different level of h-refinements, the small-large

interelements may result in a misdisplacement of the shock.
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5 Implicit/Explicit Procedures

During the first extension phase of this project an adaptive implicit/explicit method for the

solution of viscous compressible flow has been implemented. This method is being used

mainly to increase the efficiency of the h-p adaptive Navier-Stokes solver. The algorithm is

based on the general family of Taylor-Galerkin models, with several parameters controlling

the actual implicitness of the scheme, and is combined with h-p mesh adaptation and adaptive

selection of implicit and explicit zones. Several criteria for the selection of these zones have

also been studied. The theoretical formulation of the implicit/explicit method has been

accomplished previously (see reference [31]), and some numerical results have been obtained

using a different code with h-refinement capability. In the present work, the implementation

of the implicit/explicit method is based on this experience, and the major task is to extend

it for hp-adaptive procedure.

The basic idea of implicit/explicit algorithms is to combine the two methods to take

advantage of the superior features of each. The major advantage of the explicit method is that

element computations are relatively cheap and simple. Unfortunately this method suffers

from stability limitations of the time step, which in some problems leads to prohibitively

large numbers of time steps.

The implicit algorithm allows for an application of larger time steps than the explicit

method. Moreover, due to the existence of implicit boundary terms, it offers easy and

straightforward control of natural boundary conditions, particularly those involving the vis-

cous fluxes. An additional advantage is that with larger time steps no explicit artificial

dissipation is necessary, which is very important in the calculation of boundary fluxes, par-

ticularly wall heating rates. The major disadvantage of implicit methods is a much higher

cost of element operations and a more complex and expensive solution of the resulting system

of equations.

In this section, the formulation and numerical implementation of an adaptive implicit/

explicit algorithm for compressible flows is presented. The algorithm is based on the general

family of Taylor-Galerkin methods discussed in Section 2.

5.1 Formulation of implicit/explicit schemes

The algorithm of the implicit/explicit scheme must be designed so as to preserve stability, the

conservative properties, and the required order of approximation. The procedure described

below has been implemented in the code.

We begin by partitioning the domain n into subdomains N (E) and N(_) where explicit
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and implicit schemes are to be applied, respectively, and

n (e) N N (_) = FEI, fl (E) U N (t) = ft

It is convenient to assume that the interface between the two regions coincides with the

element boundaries.

It can easily be observed that the differential equations to be solved on the two subregions

are different due to different implicitness parameters applied in each zone: a (I), _(l), 7(t) in

the implicit zone and a(E),_(E),'y (E) -- 0 in the explicit zone. Therefore, the variational

formulation (2.41), based on the assumption of constant implicitness parameters, cannot

be applied to the domain fL Instead, it can be applied separately to each subdomain with

additional continuation conditions across the interface. These conditions represent continuity

of the solution and satisfaction of the conservation laws across the interface and are of the

form:

U (_) = U (t)

° = c

A! E) = A_ l)

F(nE)V -- F(') V

on FEI (5.1)

where index n refers to the outward normal for the corresonding region (n (z) = -n(l)). The

continuity requirement also pertains to the test function, so that V (E) = V (z) = V. Note

that for general weak solutions of Euler equations the solution U need not be continuous

across the interface. However, for regularized problems and finite element interpolation, the

continuity of U is actually satisfied.

If the variational statement is formulated for this problem, then in addition to interior

integrals for each subdomain and regular boundary integrals, jump integrals across the in-

terface appear in the formulation. These additional interface terms on the right-hand side

are of the form:

_,s --At [F(n/)on "4- F(E)C"] • V -k At [F (,)va "k F(E)V"] " V

A t2 _(I)_,(0c- (I - 2a (z))_. --jj j Vds+-_ [(I 2a (z)) 4- A(E) jp(E)C"]-- "'" --Jd

On the left-hand side of the variational formulation additional interface terms are of the
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form •

a(E) A (E)nAU(E)_ (E) ]At [a(1)A{l)nAu(t)n! x) + i .-i j "V

(R 0 A,, d ,., + P(f)AU(E)n_E))] V-- At [_(I)k--ij[]_(1)AU(1)-(1)----,j"i + p_l) . AU(1)n_l)) + ,7(E ) (Z) . (E)_(E)

At 2
[_ --i Aj ----j "i q" 2a(E))- - /3 --_ --i A _ ,,_ ] Vds2 [(I 2a (0) (')A 0') (0A,,(')-(') (1 (E)A(E)A(E) '7(e)-(E)]

or, after reinterpretation of the llnearized terms:

+ •v - ,,, _ •V

t2 [(1 - 2a(01A(0A(')AF (.'.)c + (1 2cr(E}IA(E) A (E)A F(E)C] Vds_ •

It" n JJ It" n $J J

In order to enforce interface conditions, the values of consecutive terms in the above formulas

should be prescribed using equation (5.1). In this way, two first terms on the right hand

side are set to zero. However, for other terms the direct application of interface conditions

is impossible because of different coefficients for implicit and explicit components. In the

present implementation of this scheme we set all the interface components to zero. This

procedure preserves the continuity of fluxes and time accuracy across the interface up to the

first order. Note that the artificial dissipation contributions, not presented here, are handled

in exactly the same way as the natural viscosity.

5.2 Selection of implicit and explicit zones

The basic criterion for selection of implicit and explicit zones is simple: for a given time step

all nodes which violate the stability criterion for an explicit scheme should be treated with

the implicit scheme. According to this criterion, several options for an automatic adaptive

selection of implicit/explicit zones were implemented:

1. User-prescribed time step At:

Within this option, the user prescribes the time step. All nodes satisfying stability

criterion for the explicit scheme (with s certain safety factor) are explicit. This means

that allthe elements connected to these nodes are treated with the explicit scheme.

On all other elements the implicit scheme is applied.

2. Prescribed maximum CFL number:

In this option, the user prescribes the maximum CFL number that can occur for

elements in fL The time step is automatically selected as the maximum step satisfying
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this condition. The choiceof a maximum CFL number may be suggested by the time

accuracy arguments or the quality of results.

3. A prescribed percentage of the domain is implicit.

In this version, the user specifies the fraction of the domain which is to be treated im-

plicitly. The elements with the strongest stability limitation (usually the smallest ones)

are treated implicitly, the others are explicit. The time step is selected to guarantee

stability of the explicit zone.

4. Minimization of the cost of computations.

This option has not been implemented in the code. It belongs to the advanced theory of

the cost minimization, and it is included here to e.zplicate some basic concepts which

are crucial to the successful application of the implcit/e.zplicit procedure. In this option,

the time step and the implicit/explicit subzones are selected to minimize the cost of

advancing the solution in time (say one time unit). The algorithm is based on the fact

that, for an increased time step, an increasing number of elements must be analyzed

with the (expansive) implicit algorithm. The typical situation is presented in Fig. 5.1,

which shows for different time steps the relative number of nodes that must be treated

with the implicit scheme (to preserve stability). On the abscissa, the AtFg denotes the

longest time step allowable for the fully explicit scheme (with certain safety factors).

AtFI denotes the shortest time step requiring a fully implicit procedure. The relative

number of implicit nodes increases as a step function from zero for At _< AtFE to one

for At _> tFl. Now assume that the ratio r of the computational cost of processing one

implicit node to the cost of processing one explicit node is given. This ratio can be

estimated relatively well by comparing the calculation time of element matrices and

adding, for implicit nodes, a correction for the solution of the system of equations. Then

the reduction of the cost of advancing the solution in time with the implicit/explicit

scheme, as compared to the fully explicit scheme, is given by the formula:

At

Typical plots of the function R(At) are presented in Fig. 5.2. Shown here are the two

c._ses:

(a) the case of a small difference between fully explicit and fully implicit time steps--

an almost uniform mesh

(b) the case of a large difference between fully explicit and fully implicit time steps
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Note that in either case, restrictions on the length of the time step should be applied,

for example, from the maximum CFL condition. Otherwise the cheapest procedure

would always be to reach the final time with one implicit step.

From the plots in Fig. 5.2, the following observation can be made: for an essentially

uniform mesh, the mixed implicit/explicit procedure does not provide savings of the

computational cost---either a fully implicit or fully explicit scheme is the cheapest de-

pending on the time step restriction. On the other hand, for very diverse mesh sizes

the mixed procedure provides considerable savings. This means that the effectiveness

of the raixed implicit/explicit scheme will be the best for large-scale computations with

both very large and very small elements present in the domain. Some introductory nu-

merical results conflrnfing this observation are presented in Section 5.4. In the practical

implementation of this method, the approximation of the function R(At) is automat-

ically estimated for a given mesh. Then, the time step corresponding to the smallest

R(At) is selected automaticaUy (subject to additional constraints, in particular the

CFI._ constraint).

In our hp mesh adaptation procedure, all high order elements (p _> 2) are handled by

implicit scheme, i.e., all high order nodes are treated as implicit nodes regardless of the

stability liraitation. This is because, with hierarchial shape functions, and p _< 2, even

explicit procedure generates out-of-diagonal entries in the mass matrix. Since presently there

are no efficient methods of lumping such a mass matrix, the explicit algorithm does not really

improve efficiency for higher p orders. Therefore only the nodes of the linear elements are

treated as candidates for implicit/explicit selection procedure. This implementation has the

following two advantages: (1) since the high order elements are often used within boundary

layers, application of implicit scheme in these regions provides faster convergence of the

boundary fluxes and offers direct control of the natural boundary conditions; and (2) with

the exclusion of high order elements from the explicit zone, the mass lumping procedure can

be easily implemented and offers a very low computation cost in this region.
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Figure 5.1: Relative number of implicit elements for increasing time step.
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Figure 5.2: Reduction of the cost of computations due to implicit-explicit procedure.
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The criteria described above are based purely on a stability analysis. The calculation of

the stable explicit time step for each linear node is based on the most conservative estimation:

the minimum value is taken from all the elements connected to this node and also the elements

whose constrained nodes are computed from this node. Nodes are defined as implicit or

explicit according to whether the explicit stability criterion is violated or not. Once the

implicit and explicit nodes have been defined, implicit and explicit elements are selected. All

linear elements which contain at least one explicit node are defined as explicit, the remaining

elements become implicit.

5.3 Computational procedure

In our compressible flow solver, the implicit/explicit procedure is combined with an h-

p adaptation scheme. The range of implicit/explicit zones is redefined after every mesh

adaptation and between adaptation after every prescribed number of steps. At every time

step, the implicit/explicit procedure results in a system of equations

(M + KCl))U _+1 = R

where the stiffness matrix K (z) has non-zero entries only for degrees of freedom in the implicit

zone or for nodes with penalty-enforced boundary conditions. The solution procedure for

the above system depends upon whether the consistent or lumped matrix is used, and the

capability of the solver used for the system of equations, for example, whether it can solve

efficiently a system with block diagonal structure.

Based on the user specified implicit/explicit zone selection criterion described in previous

section, the current version of the implicit/explicit solver uses a two-pass procedure: the

first pass is a loop through explicit elements to solve for the solution of explicit nodes by the

lumped mass method, and the second pass solves the remaining implicit degrees of freedom

with a direct frontal solver. Incorporating this algorithm within the h-p data structure, the

procedure can be listed as follows:

FIRST PASS

1 Loop through the explicit elements:

1.1 form the unconstrained consistent mass matrix and right-hand-side (RHS)

vector

1.2 modify the mass matrix and RHS vector for contrained nodes

1.3 lump the mass matrix and assemble RHS vector for explicitnodes

2 Obtain the solutionfor explicitnodes
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SECOND PASS

3 Loop through all elements:

3.1 For explicit elements containing implicit nodes:

3.1.1 form the unconstrained mass matrix and RHS vector

8.1.2 modify the unconstrained mass matrix and RHS vector for constrained

nodes

3.1.3 lump the mass matrix

3.1.4 apply boundary conditions

3.1.5 for implicit nodes, store the stiffness matrix and RHS vector in a frontal

solver format

3.2 For implicit elements:

Following the standard procedure, form the stiffness matrix and RHS vector,

and then store them in frontal solver format

4 Obtain the solution for the implicit degrees of freedom using direct solver.

Remarks

1. The calculation of mass matrix in step (1.1) needs to be done only for a single solution

component.

2. If the global lumped mass matrix is saved, it needs to be recomputed only after the

mesh is adapted or the implicit/explicit zones are redefined.

3. The lumped mass matrix is obtained by summing the rows of the %onstrained" consis-

tent mass matrix. For boundary nodes in explixit elements, the lumping is performed

before the application of the boundary conditions.

4. If the application of penalty-enforced boundary conditions produce off-diagonal entries

to the stiffness matrix (e.g. solid-wall and no-flow boundary conditions), the boundary

nodes are treated as implicit nodes and their solutions are solved in the second pass.

Numerical Illustration of Implicit/Explicit Procedures

The first example is the Carter fiat plate problem solved on a mesh with 3 levels of h-

adaptation. The density contours are shown in Fig. 5.3. Figs. 5.4a and 5.4b represent the

meshes when 40 % and 80 % of the degrees of freedom are selected as implicit, respectively.

The implicit elements are shaded dark, the explicit elements containing at least one implicit

node or node on the boundary which gives off-diagonal entries are shaded light, and the
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explicit dements containing only explicit nodes are not shaded. A complete set of timing test

runs has also been performed on this problem. These test used the third implicit/explicit zone

selection optionmthe user specifies percentage of the domain to be treated implicitly. The

results are tabulated in Table 5.1, showing the percentage of implicit zone, the timestep size,

At, the equivalent CFL number (baaed on fully explicit sheme with safety factor set to 1).

and the cost reduction factor (also based on fully explicit scheme). When the implicit/explicit

zone is selected based on the cost minimization with the limitation on the time step controlled

by the condition CFL < 10, about 65 % of the nodes are treated as implicit nodes. The

computation cost of reacAing the steady-state solution is reduced by a factor of 2 with respect

to the fully explicit algorithm.

The second example ia a blunt body with incident shock (the detailed description of the

problem is presented in Section 7). A relative coarse initial mesh consisting of 18 by 40

linear dements is used for the inriscid solution. The corresponding pressure contours are

shown in Fig. 5.5. The stable time steps of each node for the explicit scheme (based on

CLF - 1) are contoured in Fig. 5.6 and range from 0.0326 to 0.3408. The implicit and

explicit zones selected for a given time step of 0.1 are plotted in Fig. 5.7. The corresponding

cost reduction factor is about 0.71. The same mesh with 2-levels of h-adaptation for the

viscous solution and the pressure contour are shown in Figs. 5.8 and 5.9, respectively. The

stable time steps of the nodes for explicit scheme are in the range between 0.006727 and

0.3412. The implicit and explicit zones selected, shown in Fig. 5.10, are based on the second

option with a specified maximum CFL of 3. For visual darity, the drawing of element grid

lines is suppressed and the colormap is adjusted so that the light, medium and dark shades

represent the fully explicit elements, explicit elements containing implicit nodes, and fully

implicit elements, respectively. The nodes treated implicitly cover about 37 percent of the

domain, and cost reduction factor with respect to the fully explicit method is about 0.92.

Compared to a fully implicit method (which was previously the only method available in this

project) the cost reduction factor of the implicit/explicit method is about 0.14. It should

be noted that, although the pressure contours show reasonable resolution of shocks, the

clustering of the elements near the blunt body is still too coarse to resolve the flow features

in the viscous layer. The numerical results and discussion using a finer mesh are presented

in Section 7.
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PROJECT: cart l_ie DENSITY PHLOW-C/2D

f

0.45 0.825 1.275 !.8

MIN=0.5052002

MAX=2.1091222

Figure 5.3: Density contours for Carter's problem on a mesh with third level of h-refinement.
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PROJECT: aml _ie IMPLICITfl_'PLICIT ZONE I_ILOW-C/2D

ID{PLICIT DOF=I440

IMPLICIT DOF_)58
TOTAL DOF=2398

PROJECT: amlie IMPLI_Tfl_XPLICIT ZONE _ILOW-C_D

EXPLICIT DOF=.481
IMPLICIT DOF=1917
TOTAL DOFf2398

Figure 5.4: Implicit and explicit zones for the Carter flat plate problem (a) with 40 % of

nodes treated implicitly and CFL -_ 4.5 and (b) with 80 % of nodes treated implicitly and

CFL ""= 29.
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Figure 5.5:Pressure contours of inviscidsolutionon a coarse mesh.
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Figure 5.6: Contours of stable time-step sizes of nodes.

128



IMPLICIT/EXPLICIT ZONE PHLOW-C/2D

EXPLICIT DOF--4
IMPLICIT DOF=3'

TOTAL DOF=779

Figure 5.7: Implicit and explicit zones selected by specifying At = 0.1
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PROJECT: bb4._r -MESH - PHI.,OW-C/2D

D.O.F=4989

Figure 5.8: Two level h-adapted mesh for viscous solution.
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Figure 5.9:Pressure contours of viscous solution.
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IMPLICIT/EXPLICIT ZONE PHLOW-C_D

EXPLICIT DOF=3153
IMPLICIT DOF= 1836
TOTAL DOF--4989

Figure 5.10: Implicit and explicit zones selected by specifying max CFL - 3.
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6 Some Nonstandard Algorithms

In this section we present several nonstandard finite element procedures which are necessary

to ei_ciently implement the h-p finite element methodology.

6.1 Integration and Underintegration Procedures

Solving the boundary value problems associated with the Taylor-Galerkin approximation

and the approximation of the viscous step involves enforcing essential and mixed boundary

conditions, such as the no-penetration boundary condition on solid walls. These boundary

conditions are currently being enforced by means of a penalty function. It is well known

that this approach requires special integration procedures guaranteeing that the number of

integration points over any patch of elements on the boundary matches the number of degrees

of freedom in this region. Otherwise, if the number of integration points exceeds the number

of degrees of freedom, a locking effect may result when enforcing more boundary constraints

than needed. Practically, this means that integration points must be associated with nodal

locations and their number must be equal to the number of shape functions corresponding

to a given node.

In two dimensions the usual way of dealing with this problem is to introduce appropriate

underintegration on the boundary with mixed conditions, i.e., integration which for a p-th

order one-dimensional boundary of the element introduces p + 1 points with two of them

at the endpoints. The Gauss-Lobbato integration scheme satisfies such conditions and is

frequently used.

In three-dimensional h-p finite element methods, the situation is more complicated, since

one may now encounter constrained nodes and nonuniform distributions of degrees of ap-

proximation p on the two-dimensional surface of the computational domian. Consider, for

example, the situation presented in Fig. 6.1, where both active and constrained nodes are

shown. If we take the element K1, unconstrained and with uniform orders p, then a tensor

product of p + 1 one-dimensional Gauss-Lobatto integrations will have the proper number

and distribution of integration points. If we consider, however, an element with nonuniform

p's, like K2, then no tensor product of one-dimensional procedures will be suitable as such

products distribute integration points according to rectangular patterns not adequate for

nonuniform distributions of degrees of freedom. The situation is more complicated for con-

strained elements, like/(3: integration points along the side adjacent to element/(4 must

be chosen such that they coincide with integration points of the larger unconstrained neigh-

bor. Otherwise, more conditions on the global shape functions would be imposed over both

elements than the number of degrees of freedom. Figure 6.2 presents a possible distribution

of integration points which would be satisfactory from the point of view of avoiding locking
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effects.

The problem that emerges is to construct integration procedures which are accurate

enough but which also satisfy the indicated restrictions on the numbers and locations of

sampling points. To avoid this problem, note that the integration of penalty terms does not

require any accuracy of the integration procedure: the penalty approach is an implicit way

of imposing pointwise conditions on the solution (collocation). The only reason for using

some specific integration procedures (i.e., with some accuracy) is that not only are penalty

terms integrated on the boundary, but also other quantities (like stresses, etc.) are computed

on the boundary which we wish to integrate with sufficient accuracy as well. This suggests

that we simply use separate procedures for integrating penalty terms and all the remaining

quantities. In the first case, use sampling points (not necessarily integration points) whose

number and location corresponds to locations of nodes and their orders p, with (say) unit

weights. In the second case, use ordinary numerical integration procedures, for instance

Gaussian quadratures. An example of a choice of sampling points for integrating penalty

terms is shown in Fig. 6.3: they are distributed uniformly along unconstrained sides and

the interior of the element wall with their number being p + 1 or (p + 1) 2, respectively. For

constrained sides, sampling points are chosen to coincide with those of the larger neighbor

for which the common side is not constrained.

134



K 4

3

3

S

+

3

3 IIIII_

AA

Figure 6.1: Sample h-p grid containing both active and constrained nodes.
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The problem of enforcing mixed boundary conditions involves also a choice of approxima-

tion of the outward normal to the boundary. The simplest solution is to define the outward

normal at a point common to several elements as an average of outward normals evaluated

for all these elements.

6.2 Routines for Performing Refinements in Boundary Layer
Zone

As mentioned in the section on adaptivity, p-refinements along the solid wall boundaries are

currently not performed automatically, but rather "by hand." That is, a user decides which

elements should be enriched. In fact, designing a mesh in the boundary layer zone may also

require some other operations like breaking or unrefining some elements. If one solves a test

problem with a relatively small number of elements, such an operation can be performed

interactively. In the case of a real life problem, however, the user would have to indicate a

large number of dements to be refined or unrefined.

A method has been developed that significantly reduces the effort of interactive generation

(refinement and unrefinement) of simple meshes. The method consists of mapping a possibly

curvilinear portion of a mesh into a rectangular domain with element sides parallel to the

sides of a rectangle. Of course, the method can be applied only to pieces of the mesh for

which the pattern of initial elements is topologically equivalent to a uniform rectangular
mesh.

The idea of using the mapped image of the mesh to perform the required refinements is

simple. First one identifies the rectangular coordinates of a group of elements that they wish

to refine (this is an easy operation as mapped elements constitute rectangular patterns).

Then one performs a specified refinement by giving the coordinates of rectangles covering

the considered subdomain. For instance, one may prescribe: break elements between z = 0

and x = 1 and between y = 0.5 and y = .75, etc. This way of generating meshes and

simple refinements is still interactive yet it allows one to perform massive refinements with

a minimal effort. (See the User Manual for additional details.)

6.3 Postprocessing in Three Dimensions

When solving three-dimensional problems, special attention must be devoted to the problem

of displaying the solution. The three-dimensional finite element code is equipped with a

postprocessing package which can display contour maps of the solution on the boundary and

on the desired cross sections of the computational domain. This postprocessing is rather

expensive and it is not always suffident for displaying interesting features of the solution.
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Figure 6.3: Sampling points for integrating penalty terms.
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For instance, contour maps give only a rather inaccurate image of quantities defined on

the boundary of the domain such as, say, heat flux or skin friction. Three-dimensional

perspectives of such functions give a much better idea of their behavior.

Following this motivation an algorithm was developed for displaying three-dimensional

perspectives of the solution dependent functions on the portions of the boundary of a three-

dimensional domain. In the first step, the indicated portion of the boundary, possibly curvi-

linear, is continuously mapped into a fiat plane. Two kinds of mappings are possible; a

projection in a given direction or the mapping "stretching _ a two-dimensional mesh of dis-

torted rectangles on the boundary into a plain mesh of distorted rectangles on the boundary

into a plain mesh of rectangles, the transformation described in the previous section. In

the second step, a three-dimensional perspective of the solution is displayed over the plane

domain.

The procedure is inexpensive if compared to contouring in three dimensions and it is very

helpful in showing intricate features of a three--dimensional solution.

6.4 Solution Correcting Procedures

When integrating the Euler or Navier-Stokes equations one frequently encounters a cum-

berson phenomenon: the solution evolves to a physically unacceptable state with negative

densities or pressures. Such situations make further integration impossible unless one artifi-

cially corrects the solution by "pushing it back" to physically meaningful values.

A procedure for performing this operation was designed. It can be outlined as follows:

First, one verifies if

1( 22)
t = e-_ rn_+rn /p>O

where p is density, t internal energy, m, n momentum components, and e is the total energy.

Note that the above conditions imply that e _> 0 and the pressure p = (_- 1)t > 0. If either

p < 0 or t < 0, one replaces p and e by new values p° and e* defined as a projection of the

point (p, e) E R _ onto a set A C _ of physically acceptable densities and energies:

{ 1 }A= (p,e) as: p>0 andpe> (m'+

The correcting procedure described here has proven very useful especially when starting the

integration process when the initial solution may not satisfy given boundary conditions and

lead immediately to nonphysical states.
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7 Numerical Examples

Several problems were solved to test the algorithms presented in the previous sections. The

problems range from the simplest two--dimensional inviscid flow over a wedge to three--

dimensional viscous flows with high Maria and Reynolds numbers. In all of the numerical

examples presented here we have focused on providing solutions exclusively for steady state

problems. The integration in time process is a method of obtaining such solutions. After

converging to steady state, error estimation and mesh adaptation are performed according

to rules presented in Section 4. The residual error indicators are used as the basis for mesh

refinement with the equidistribution of errors as a refinement strategy.

The stable time step At used in the calculations has been evaluated by the following

formula

/,.1/
where lul is the maximum magnitude of the fluid velocity in the element K, c is the speed

of sound, and CFL is the Courant, Friedrichs, Lewy stability coefficient [6]. In addition, all

three types of artificial dissipation, the Lapidus and Morgan's viscosities and a generalization

of the last one for distorted elements have been used for various problems. The implicitness

parameters _ and "_ in all the examples are set equal to one. As a linear equation solver we

have used the block Jacobi algorithm accelerted with GMRES.

Ezample 1: lnviscid Flow Over a Wedge on h-Adapted Meshes

We consider the problem of supersonic flow over a wedge with the following prescribed data:

Mach number M = 3.0

Inclination of the wedge 0 = 20*

The initial meshes consist of 12 x 5 linear, quadratic, and cubic elements. The Lapidus

viscosity constants for these three cases were assumed as ck = 1, ck = 0.15, ck = 0.07,

respectively.

The h-adaptive meshes are shown in Figs. 7.1, 7.3, and 7.5, and the corresponding density

contours are given in Figs. 7.2, 7.4, and 7.6. Comparing these figures one finds that all three

meshes have captured the shock within two or three elements and all of the shock angles are

virtually identical. In addition, the density contours obtained from the linear mesh (Fig. 7.2)

show a much tighter shock pattern than the quadratic or cubic meshes (Figs. 7.4 and 7.6).

This is most likely a result of the two additional levels of h-refinement and an introduction

of approximately 50 percent more degrees of freedom in the shock region than in either of
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the other two cases. Finally, note that all these cases show very little of any reflection of the

shock at the subsonic outflow boundary on the upper surface.
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Figure 7.1: Flow over s wedge problem on an h-adaptive mesh of linear elements. Final

mesh,
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Figure 7.2: Flow over a wedge problem on an h-adaptive mesh of linear elements. Density
contours.
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Figure 7.3: Flow over a wedge problem on an h-adaptive mesh of quadratic elements. Mesh

after two levels of refinements.

144



• ° .

0.8125 1. ! 875 i .6875 2.1875 2.5625

MIN=0.9420

MAX=2.561_

Figure 7.4: Flow over a wedge problem on an h-adaptive mesh of quadratic elements. Density

contours.
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Figure 7.5: Flow over a wedge problem on an h-adaptive mesh of cubic elements. Mesh after

one level of refinement.
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Figure 7.6: Flow over _ wedge problems on an h-adaptive mesh of cubic elements. Density

contours.
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Example _: Inviscid Flow Over a Blunt Body on h-Adapted Meshes

As a second test problem, we considered the supersonic flow over a cylinder with Mach

number M = 6.0. The problem was solved starting with initial meshes of 16 x 16 linear

elements and 8 x 8 quadratic and cubic elements. The viscosity constants ck were set to 1.0,

0.07, and 0.035, respectively. The final h-adapted meshes are presented in Figs. 7.7, 7.9, and

7.11, the corresponding density contours are shown in Figs. 7.8, 7.10, and 7.12. Comparing

these results one finds again that all three meshes have predicted virtually identical stand-off

distances for the bow shock, and have captured the shock within two or three elements. The

resolution of the shock for the linear and quadratic meshes in this case is again somewhat

better than for the cubic mesh, which is most likely due to the number of degrees of freedom

introduced in the shock region. Finally, note that the density contours for the cubic elements

are the smoothest of the three meshes. This same pattern can be observed in Figs. 7.2, 7.4,

and 7.6 of Example 1.
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Figure 7.7: Blunt body problem on an h-adaptive mesh of linear elements. Mesh after two

levels of refinements.

149



75

75

75

IvHN-0.9752487

MAX-5.6417254

Figure 7.8: Blunt body problem on an h-adaptive mesh of linear elements. Density contours.
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Figure 7.9: Blunt body problem on an h-aziaptive mesh of quadratic elements. Mesh with

two levels of refinements.
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Figure 7.10: Blunt body problem on an h-adaptive mesh of quadratic elements. Density

contours.
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Figure 7.11: Blunt body problem on an h-_claptive mesh of cubic elements. Mesh after one

level of refinements.
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Figure 7.12: Blunt body problem on an h-adaptive mesh of cubic elements. Density contours.
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Ezample 3: Carter's Flat Plate Problem

The third test case we considered was Carter's Flat Plate Problem [5] with the following

data

Moo = 3, ReL = 1000, Pr = 0.72, 7 = 1.4, Too = 390[°R] (7.2)

The geometry and boundary conditions are shown in Fig. 7.13. The following flow featues

are recognized:

• a singularity exists near the leading edge of the plate,

• a curved bow shock is developed from the tip of the plate, and

• a boundary layer is formed along the plate.

The flags in the figure (KIND = 1,..., 5) correspond to various boundary conditions incor-

porated in the code. The solid wall temperature is

T,,_u = 10921"R] (7.3)

A nonuniform initial h-p finite element mesh, as shown in Fig. 7.14 with second and

third order elements defined along the solid wall boundary, has been used to march to the

steady state condition. In order to reduce the numbers of degrees of freedom in most of the

boundary layer region (except near the stagnation point), anisotropic elements were used

which have a high order of approximation in the direction normal to the plate and a linear

approximation along the plate.

Using the pure h-adaptive strategy described in Section 4, the mesh shown in Fig. 7.15

was obtained. The corresponding density contours are presented in Fig. 7.16. The next

two sequences of adaptive meshes are shown in Figs. 7.17 and 7.19 with the corresponding

density contours in Figs. 7.18 and 7.20. After the third adaptive refinement, the solution

process was stopped when the error reached the prescribed error tolerance. In all steps, the

CFL constant was set to 0.5.

Figures 7.21 and 7.22 compare the computed profiles of pressure and skin friction dis-

tributions along the solid wall with the original results of Carter, showing good agreement

away from the stagnation point and the ability of the method to also resolve the stagnation

point itself. Figure 7.23 shows the computed heat flux along the solid wall (not presented

in Carter's report). Note the positive sign in the vicinity of the tip of the plate (the gas

heating plate). The stabilizing effect of higher order elements near the solid wall can also be

observed in the pressure contours shown in Fig. 7.24 corresponding to the final mesh.
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Figure 7.13: Carter's fiat plate problem. Geometry and boundary conditions.
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Figure 7.14: Carter's fiat plate problem. A nonuniform initial h-p mesh.
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Figure 7.15: Carter's fiat plate problem. An optimal mesh with maximum level of refinement

equal 2 (Mesh 1).
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Figure 7.17: Carter's problem. Mesh 2.
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Figure 7.18: Carter's problem. Mesh 2. Density contours.
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Figure 7.19: Carter's problem. Mesh 3.
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Figure 7.20: Carter's problem. Mesh 3. Density contours.

163



÷

÷
÷

+

I

m

Figure 7.21: Carter's problem. Pressure profiles along the plate.
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Ezample _: Flat Plate Problem with Re = 10,000

As a continuation of Example 3, we have also performed an analysis of the flat plate problem

with a Reynolds number of one order of magnitude larger. This required solving example

problem 3 in a domain roughly ten times larger than before. In order to avoid an excessive

number of degrees of freedom in the initial meshes, resulting from higher order elements in

the initial stage of the solution procedure, higher order elements were introduced only in the

last adaptive step after all h-refinements were performed.

Starting with an initial mesh of only 4 x 8 elements, a sequence of consecutive optimal

linear meshes were obtained using the adaptive strategy discussed in Section 4. A total of 7

refinements were generated, each computed only when the optimal mesh for a particular level

of refinement had been obtained. The final mesh and the corresponding density contours

are shown in Fig. 7.25. Figure 7.26 presents a three-dimensional perspective of the same

density function showing a clear separation of the shock from the boundary layer.

For coarse meshes (low levels of refinement), the computed boundary layer is primarily

due to numerical viscosity, the corresponding viscous quantities, especially near the leading

edge, being far from those obtained in the previous example. Figure 7.27 presents, for

instance, the profile of heat flux along the solid wall (compare with Fig 7.23).

The situation drastically changes, however, when a layer of second, third, and fourth

order elements are introduced into the mesh (see Fig. 7.28). The corresponding heat flux

profile, shown in Fig. 7.29, agrees qualitatively with the results obtained in the previous

example.
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Figure 7.25: Flat plate problem with Re = 10,000. Density contours and optimal mesh of
linear elements with the maximum level of element = 7.
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Figure 7.26: Flat plate problem with Re = 10,000. A three--dimensional perspective of the

density function on the optimal mesh of linear elements.
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Figure 7.27: Flat plate problem with Re -- 10,000. Heat flux coefficient profile along the

plate for the mesh of linear elements.
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the boundary layer.
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Figure 7.29: Flat plate problem with Re -- 10,000. Heat flux coefficient profile along the

plate for the enriched mesh.
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Example 5: The Holden Compression Corner Problem, M = 5, Re = 30,000

The next two-dimensional test case modeled was the viscous flow over a compression corner.

The problem was solved for the following data:

M = 5

Re = 30,000

T,,al = 288°K

Too = 800K

angle of inclination 15 °

The initial mesh consisted of 7 × 17 linear elements. Three levels of h-refinements were

subsequently performed leading to a good resolution of the shocks inside the computational

domain. Finally, layers of quadratic, cubic, and fourth order anisotropic elements were in-

troduced along the solid wall boundary. The elements in the neighborhood of the stagnation

point were not enriched as we experienced some stability problems with higher order elements

in this area. The final h-p mesh is shown in Fig. 7.30.

The solution, contours of density and profiles of the density, velocity, temperature and

pressure coefficient are shown in Figs. 7.31-7.43. As in the previous example a stabilizing

effect of higher order approximations on the behavior or pressure can be observed. The

profiles of the heat flux and the skin friction are shown in Figs. 7.44 and 7.45. A dramatic

change in the quality of these two fluxes is observed as we move from the section of the

boundary with linear elements only to the enriched part.

The higher order approximation resulted also in a satisfactory resolution of another fine

feature of the solution: the recirculation of the flow. This is shown in Figs. 7.46 and 7.47

where the directions of the flow and the negative contours of ul-velocity in the zone of

recirculation are presented.
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Figure 7.30: Holden's compression corner problem, h-p adaptive mesh.
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Figure 7.32: Holden's compression corner problem. Profile of density along vert 1.
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Figure 7.34: Holden's compression corner problem. Profile of temperature along vert 1.
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Figure 7.36: Holden's compression corner problem. Profile of density along vert 2.
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Figure 7.42: Holden's compression corner problem. Profile of temperature along vert 3.
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Example 6: Inviscid Flow Past a 20 ° Wedge, M = 3

Our first three-dimensional test case was the supersonic inviscid flow (M = 3) over a two-

dimensional wedge (analyzed using the three-dimensional code). The initial mesh consisted

of one layer of 4 x 8 linear elements. On the side surfaces we imposed symmetry boundary

conditions, which enforce (weakly) the condition aU/an = 0, which was intended to enforce

the two-dimensional character of the flow. The solution (contours of density) and h-adapted

mesh are shown in Fig. 7.48. One can observe that indeed the solution is essentially inde-

pendent of the y-coordinate direction. Comparing this result with the two-dimensional case

(Fig. 7.2), one observes a good qualitative agreement of the flow features and shock angle.

Example 7: Inviscid Flow Around a Sphere, M = 6

Next, the supersonic (M = 6) flow over a spherical blunt body was solved. In the discretiza-

tion, symmetry was enforced so that only one quarter of a half sphere is meshed. The initial

mesh is generated by appropriately mapping a regular 7 x 7 x 4 rectangular mesh onto the

quarter sphere. Such a mapping, if performed to cover exactly the octant of a sphere, can

lead to severe distortions of some elements as it has to transform a rectangular domain into

a topologically triangular domain; hence, the octant is not covered exactly, leaving some

missing sections on the outflow boundary (see Fig. 7.49). On the lower and right planes of

Fig. 7.49, symmetry boundary conditions are imposed. Modified Lapidus viscosity is used

as the artificial dissipation mechanism in this problem. The h-axtapted mesh and computed

density contours are shown in Figs. 7.50 and 7.51. The flow is characterized by a bow surface

of the shock surrounding the body.

Example 8: Viscous Flow Past a Flat Plate, M = 3

The classical two-dimensional flat plate problem was also modeled using the three-

dimensional code. The data for the problem are: M = 3, Re = 500, Too = 8OK,

T,,_u = 280"K. The computational domain was discretized initially by one layer of 4 x 8

elements. After converging to a steady state solution the elements along the plate were

refined and enriched to second and third order. Anisotropic p-enrichments are used, intro-

ducing higher order approximations only in the direction perpendicular to the wall, so as

to significantly improve the approximation of the boundary layer. Locally, the structure

of the boundary layer is close to that of the one-dimensional case, the largest gradients

being in a direction perpendicular to the wall. The enriched mesh is shown in Fig. 7.52,

where anisotropically enriched elements are marked by shading their edges in the direction

of enrichment.
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Figure 7.48: Inviscid flow past a 20 ° wedge, M = 3. Density contours and an h-adapted

mesh.
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Figure 7.49: Flow around a sphere, M = 6. An initial mesh.
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Figure 7.50: Flow around a sphere, M = 6. h-adaptive mesh.
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Figure 7.51: Flow around a sphere, M = 6. Density contours.
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After converging to a steady state solution on this mesh h-adaptations were performed

based on interpolation error indicators. The new mesh and density contours are shown in

Figs. 7.53 and 7.54. Observe that major features of the flow, the shock and boundary layer

zone, are well-resolved. Figs. 7.55 and 7.56 present plots of the skin friction coefficient and

the heat flux coefficient.
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Figure 7.52: Viscous flow over a flat plate, M = 3. h-p a_lapted mesh after one refinement

iteration.
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Figure 7.53: Viscous flow over a fiat plate, M -- 3. h-p adapted mesh after two refinement

iterations.
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Figure 7.54: Flat plate problem, M = 3. Re = 500. Density contours.
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Figure 7.55: Carter fiat plate, M = 3. Profile of skin friction coe_cient along the plate.
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Benchmark Problems

Ezample 9: Blunt Body Problem With a Type IV (Edney} Interaction

The firstbenchmark problem isa supersonic viscous flow around a blunt body problem with

an incident shock, as defined in Fig. 7.57 and described in [32]. During the firstphase of

this analysis we applied the adaptive finiteelement method to the inviscidcase. A set of

preliminary resultsfor thiscase ispresented here in Fig. 7.58 to Fig. 7.62. The initialmesh

consists of 32 by 16 linear elements and is shown in Fig. 7.58. The final h-adapted mesh

with 3 levels of refinement and the contours of density are shown in Fig. 7.59 and 7.60,

respectively. The major deficiency in this solution is a poor resolution of the shock near

the cylinder, where the error estimator (the residual technique) was not indicating large

errors, at least as compared to the other shocks. To improve the quality of the solution, an

additional manual mesh refinement was introduced in this region simultaneously with the

automatic mesh adaptation procedure. A solution on this final mesh, Fig. 7.61, is shown in

Fig. 7.62. (The above results was obtained by the two-step procedure described in Sec. 2.)

During the second phase of the analysis, the work has focused on the viscous solution

of the blunt body problem, where the freestrearn Reynolds number (based on the cylinder

radius) was 2.00977.10 s, and the wall temperature was fixed at 530"R. Two different meshes

have been used to solve this case. The first mesh (referred as mesh A), shown in Fig. 5.7,

consists of 40 by 18 linear elements initially, and is graded by a geometric progression of

factor 1.01 in the radial direction. To initialize the flow, the inviscid solution was calculated

on a one-level uniformly refined mesh. This solution was used as a starting point for a viscous

analysis. The mesh with two levels of h-adaptation and the pressure contours of the viscous

solution are presented in Figs. 5.8 and 5.9. A 3D perspective view of the pressure is also

shown in Fig. 7.63. While the result shows a reasonable shock resolution, the viscous features

near the cylinder are still far from fully resolved and do not compare well with experiment

data provided by NASA LaRC. This indicates a need to introducing more degrees of freedom

along the cylinder to resolve the viscous phenomena. Notice that the smallest thickness of

the element along the cylinder after two levels of refinement is still greater than 1% of the

radius. Ref I321 also indicates that the dominant viscous region is less than 1% of the radial

distance from the cylinder.

In order to resolve viscous phenomena near the wall, a higher order approximation was

introduced in the boundary layer. A mesh (referred to as mesh B) with such features is shown

in Fig. 7.64. The boundary layer zone of width approximately 0.01 was covered by nine layers

of second order elements with sizes geometrically graded toward the wall (with ratio q = 0.5).

The size of the smallest element is was based on laminar boundary layer theory as well as on

results presented in/iterature [32]. The rest of the computational domain is discretized by
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40 by 18 linear elements. A final adapted mesh with two levels of h-adaptation (with 7082

degrees of freedom) is show in Fig. 7.65. The corresponding pressure contour and sonic line

are presented in Figs. 7.66 and 7.67, respectively. The 3D perspective views of the density

and pressure in the shock-boundary layer interaction area are shown in Figs. 7.68 and 7.69,

where the embedded shocks in the jet zone can be clearly identified.

The mesh with quadratic elements in the near-wall region for this case provided a much

better resolution of viscous phenomena and favorable comparisons with experimental results.

In particular, the comparison of pressure and heat flux along the cylinder with the exper-

imental data are profiled in Figs. 7.70 and 7.71, respectively. The predicted wall pressure

distribution is in very good agreement with the experiment results, except the small dif-

ference of the shock impingement location. (The same discrepancy was also reported and

explained in Ref [18], where it was essentially attributed to fluctuation in the experimen-

tal flow pattern.) The plot of the heat flux shows a good correlation with experimental

observations--better than many other numerical references with much finer meshes. Note

that the oscillatory character of our numerical heat flux is a consequence of a temporary

imperfection in our post-processing package--gradients are calculated and plotted at nodes,

where their accuracy is the lowest. A better postprocessing algorithm would be to perform

the gradient calculations at integration points and then project the solution to the nodes.

Also note that a discrepancy in the magnitude of the heat flux distribution between the

numerical and experimental data was also reported in Refs. [18,32]. It should be mentioned

that our computational grid has a much coarser circumferential resolution than those used in

other references. The cylinder was covered by 40 quadratic elements in the circumferential

direction (on the adapted mesh). Because of the curvature effects around the cylinder, high

accuracy on such a coarse mesh can only be achieved by using high order dements. For

example, mesh A, which consists of linear elements only, and with even more than 10,000

degrees of freedom, failed to provide a reasonable resolution of heat flux.

The numerical results on the last adapted mesh B were obtained using the im-

plicit/explicit procedure. Because the stable time step sizes are always restricted by the

extremely thin elements in the viscous layer, both fully implicit and fully explicit schemes

are more expensive than the mixed implicit/explicit procedure. For this case, we set the

maximum CFL number to 50, and were able to gain the cost reduction factor of 0.127 com-

paring with fully implicit algorithm. Recall that the cost reduction factor was defined in

Section 5 as the ratio of the cost marching in time (and converging to steady state) between

the implicit/explicit and fully implicit algorithm. Thus, the above factor indicates that the

implicit/explicit algorithm was about 8 times faster--a considerable speedup.
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Coordinates

Point X/R Y/R

1 0.0 4.5
2 -2.5 4.5
3 -2.5 -0.z
4 -2.5 -3.5
5 0 -3.5

Flow Conditions

Region A Region B

Mach Number 8.03 5.25

Density (slugslft s) 4.866 x 10"s 16.198 x 10 s

Temperature (*R) 220.0 469.43

Figure 7.57: Blunt body problem, initial conditions and geometry.
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PROJECT: deck MESH

D.O.F--

Figure 7.58: Blunt body problem, initial computational mesh.
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Figure 7.59: Blunt body problem, automatically h-adapted mesh used in the inviscid anal-

ysis.
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Figure 7.60: Blunt body problem, density contours for the inviscid solution.
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Figure 7.61: Blunt body problem, final mesh with additional manual adaptation in the near

wall region.
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Figure 7.62: Blunt body problem, density contours for the final mesh.
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Figure 7.63: Blunt body problem, 3D view of pressure.
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PROJECT:bb3 - MESH - PHLOW-C/2D
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Figure 7.64: Graded Mesh, includes 9 layersof quadratic elements along the cylinder (Re-

ferred as Mesh B.)
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Figure 7.65: Mesh B after 2 levels of sdaptstion. Elements on the wall are of the second

order.
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Figure 7.66: Pressure contours obtained on the adapted Mesh B.
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Figure 7.67: Sonic line obtained on adapted Mesh B.
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Figure 7.68: 3D view of density in the shock impingement region.

217
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Figure 7.69: 3D view of pressure in the shock impingement region.
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Figure 7.70: Wall pressure distribution.
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Figure 7.71: Wall heat flux distribution.

220



Example I0: Shock/Bounda_ Layer Interaction With Separated Flow

The second benchmark problem involves a shock/boundary layer interaction with separated

flow (Holden problem [30,32]). The particular flow conditions used in the analysis of the

Holden problem are as follows:

M = 14.1

Re = 72,000

T® = 80*K
T,,_a = 297.2"K

inclination of the wedge = 24*

We initiated work on this problem in the previous phase of the project, but encountered

considerable difficulties in resolving the flow recirculation region. These difficulties were

resolved in the Phase II effort and, moreover, the source of our previous difficulties was

identified as the artificial dissipation model. The effort spent on solving this problem during

the previous phase is summarized in the next two paragraphs, and the related numerical

results are included in Figs. 7.72 to 7.77.

The first approach for solving this problem was with the two-step algorithm using an

initial mesh of 11 × 25 linear elements. The elements were stretched in the horizontal

direction with the aspect ratio along the solid wall boundary of only about 1:5 and the size

of the smallest elements is about 0.03. The problem turned out to be practically unsolvable

without the artificial viscosity especially designed for highly stretched or distorted elements.

The standard artificial viscosities (Lapidus' and Morgan's models described in Section 2.4)

failed to stabilize the solution around the stagnation point. On the other hand, introducing

elements with an aspect ratio of 1 in the wall area results in a prohibitively large number

of elements and small time step, slowing down the integration process. However with our

modified artificial dissipation model the solution process was able to proceed on the original

mesh. An h-adaptive mesh with three levels of refinement (based on residual error indicators)

is shown in Fig. 7.72, the corresponding density contours are shown in Fig. 7.73. Salient

points about the solution to note include: sharp shock resolution, minimal number of degrees

of freedom to capture the shocks, and reflected shock/leading edge-shock/boundary layer

interaction. However, the key viscous feature along the wall, the recirculation bubble, has

not been resolved.

In a parallel modeling effort, we also used the one-step Taylor-Galerkin algorithm which

allows one to use much larger time steps and therefore leads to faster convergence of the

steady state solution. The initial linear mesh used in this solution procedure is shown in

Fig. 7.74. Compared to the previous mesh we introduced a considerably finer discretization

along the solid wall boundary, the size of the smallest dements is now 0.005 and the maximum

aspect ratio is 25. The problem was run with the CFL constant set to 2.5. From the solution
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obtained after 100 and 200 time steps, the mesh was h-adapted up to the second level, based

on the residual error indicators, see Fig. 7.75. The contours of the density for this mesh and

v-component of the velocity are shown in Figs. 7.76 and 7.77. While the mesh also provides

a reasonable resolution of the shocks, the recirculation region was still not well developed.

For this mesh we also introduced a p-enriched mesh along the solid wall, with the hope for

better resolution of recirculation of the flow, but this effort was also unsuccessful.

During phase II of this project, we have experimented with several different artificial

dissipation (AD) models. We found that this is the crucial factor in resolving the flow

separation phenomenon for this benchmark problem. Recall that in Section 2.4 we have

implemented three different AD models: 1) the classical Lapidus, 2) the modified Lapidus

by Lbhner at el., and 3) our version which is a modification of the second model in order

to handle elements of high aspect ratios. As expected, out modified model performs better

than the other two models on elements with irregular shapes (high aspect ratios or high

distortions), and we have used this model successfully to solve all the test problems, in-

cluding a compression corner problem with a lower Mach number as described previously.

For Holden's problem at Mach 14, however, all three models have di_culty resolving the

separation region. Usually, in the solution of problems with strong shock-boundary layer

interactions, not only does the mesh have to be well adapted according to the flow features,

but the AD is also a key factor. From numerous test runs, we have found that for this

problem, resolution of the recirculation bubble is extremely sensitive to the application of

AD because of the flat shock angle and sharp boundary layer pattern involved. It is well

known that, for viscous compressible hypersonic flows, the ideal AD model should provide

just enough dissipation to smooth shock discontinuities without oversmearing, and should be

formulated to avoid introducing too much dissipation (relative to the natural dissipation) in

the boundary layer region. This means that the AD should have an accurate built-in sensor

to control the amount of dissipation and detect the direction in which the AD is to be added.

All three models (belonging to the Lapidus family) are using the velocity gradient as sensors,

and their success are based on the argument that the maximum change of velocity gradient

is perpendicular to shocks so the AD is also added in that direction. In the boundary layer

region, since the change of velocity gradient is perpendicular to the solid wall, there will he

no AD introduced in the tangential direction which may otherwise put too much _artificial"

dissipation to accurately resolve the _real _ flow features.

In the formulation of our AD model described in Section 2.4, the unit vector l was

based on the gradient calculated on the master element as in Eq. (2.95). Noticing that the

orthogonality is not preserved under the transformation, we used the t vector computed

on the original element. With this simple remedy, the recirculation bubble was successfully

resolved. However, because it is a less dissipative mechanism than other models, the solution

is more oscillatory near the shocks and the leading edge, and smaller time steps were required

222



to successfully converge. The analysis effort based on these various AD models is presented

below.

In order to compare the numerical results with those presented in ref [30], we used an

initial mesh consists of 27 by 25 linear elements, see Fig. 7.?8, which was clustered almost

identically to the SM mesh used therein. After two levels of uniform refinement, the thickness

of the smallest elements would be 2.42 • lO-Sft, which also matches the SM mesh. On the

mesh with one level of uniform refinement, we have experimented with three different AD

models: (a) the Lapidus, (b) the modified version of Morgan's presented in Sec. 2.4, and

(c) our modified model with the fix as described in the previous paragraph. The results are

shown in Figs. ?.?9, 7.80, and ?.81, respectively, and are displayed by the contours of the v-

component of the velocity. While the first two cases failed to resolve the recirculation bubble,

the last one clearly indicates the flow separation region. At this point it is important to note,

that we do not claim here that this variant of artificial dissipation is ultimately better than

others. It rather seems that the other models were too dissipative for this problem and were

"wiping out" the fragile separation point. The design of an ultimate artificial dissipation

model, which would resolve the shocks without smearing other features of the solution, is

still an open challenge in computational fluid dynamics.

The same mesh with two levels of h-adaptation is shown in Fig. 7.82. The numerical

results presented in Figs. 7.83 to 7.85 show contour plots of the density, v-component of

the velocity, and a 3D view of pressure in the recirculation region. A comparison of the

pressure, skin friction, and heat transfer coei_icients along the solid wall with the experiment

data are profiled in Figs. 7.86 to 7.88, respectively. In general, they show a similar overall

agreement with experiment data as those numerical results for mesh SM presented in ref [30],

except that our heat flux is underpredicted in the shock reattachment region. We believe

that this discrepancy is caused by the AD introduced in this region. Intuitively speaking, a

certain fraction of the total dissipation on the wall is "taken over" by the AD model, which

tends to reduce the flux contributions from the natural dissipation. Note that, since the

amount of dissipation due to the AD model decreases with decreasing mesh size, further

mesh refinement would produce even better agreement between the numerical results and

experimental data.

In the last stage of these computations, the recently implemented implicit/explicit al-

gorithm was used for the solution of the problem. Due to the oscillatory behavior of the

solution (caused by the high speed flow) near the leading edge, the maximum bound for
CFL number was set to a rather low value of 2. On the final adapted mesh this corre-

sponds to only 6.6% of domain selected as implicit, with the implicit elements clustered in

the near-wall region. Based on this zone selection, the cost reduction factor with respect

to the fully implicit and fully explicit schemes was 0.06 and 0.65, respectively. This means

that the implicit/explicit algorithm converged about 17 times faster than the fully implicit

223



algorithm (the only method available previously in the code) and about 2 times faster than

the fully explicit algorithm, with an additional beneficial effect of smoothing the oscillatory

tendencies of the solution near the plate tip.
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Figure 7.72: Holden problem, Re = 72,000, h-adapted mesh with three levels of refinement.
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Figure 7.73: Holden problem, Re = 72,000, density contours for an h-adapted mesh.
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Figure 7.74: Holden problem, Re = 72,000, initial mesh used for the one-step method.
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Figure 7.75: Holden problem, Re = 72,000, h-adapted mesh.
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Figure 7.76: Holden problem, Re = 72,000, density contours for an h-adapted mesh.
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Figure 7.77: Holden problem, Re = 72,000, V-velocity contours for an h-adapted mesh.
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Fibre 7.78: Initial mesh (referred as SM mesh).
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Figure 7.79: V-velocity contours for Lapidus AD model (on SM mesh with one level of
uniform h-refinements.

232



PROJECT: hd2_r V - VELOCITY PHLOW-C/'2

lJtltlllllJlllJllJllllllll
-0.04 0.0656 0.1712 0.2944 0.4

l_flN=-0.025159

MAX=0.399770]

Figure 7.80: V-velocity contours for modified Morgan's AD model (on SM mesh with one

level of uniform h-refinement.
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Figure 7.81: V-velocity contours for modified Morgan's AD model with fix (on SM mesh

with one level of uniform h-refinement.
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Figure 7.82: SM mesh after 2 levels of h-adaptation.
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Figure 7.83: Density contours for an adapted SM mesh.
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Figure 7.84: V-velocity contours for an adapted SM mesh.
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Figure 7.85: 3D view of pressure distribution for an adapted SM mesh (the protion of the

mesh displayed covers the separation and reattachment regions.
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Figure 7.86: Pressure distribution along the plste for adapted SM mesh.
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Figure 7.87: Skin friction distribution along the plate for adapted SM mesh.
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Figure 7.88: Heat flux distribution along the plate for adapted SM mesh.
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Ezample 11: Rearward Facing Step with Strong Ezpansion

The third benchmark problem modeled herein is a supersonic, viscous, laminar separated

flow over a rearward facing step. A schematic of the geometry is shown in Fig. 7.89 with

several additional labels identifying regions of the domain which are referred to later. The

experimental data provided by NASA Langley for this test case, as well as several other

similar configurations, is found in Ref. [17]. In this reference, experiments were conducted for

a range of test conditions: Too = 2700 _, 5500"K, Moo - 3.95 ,_ 4.27, Reoo/crn = 160 ,,- 2200.

For the non-suction case, with no chemical reactions which is our focal point in this example,

the experimental data includes a heat transfer distribution and a surface pressure distribution

downstream of the step.

The experimental setup contained two sets of control data from which we selected the

case with the maximum step height. For this case, h = 1.02 era, and the following flow

conditions exist:

Moo = 4.08

Reoo,h = 1650
Too = 3750"K

T,,tu = 297°K

The initial mesh for this problem consists of 28 by 8 linear elements with some clustering

near the wall as shown in Fig. 7.89. The initial conditions were defined as a uniform flow

in the whole domain, and the problem was first solved with 2 levels of uniform refinements

which corresponds to 3729 degrees of freedom. A very small time step was initially required

to avoid the negative densities and pressures near the corner of the backstep during start up

from free stream conditions. After the flow stabilized, we applied the h-adaptation option to

begin resolving the shocks and boundary layer regions. The flow features of specific interest

in this problem required high resolution of the flow field variables in the regions of the

boundary layer along the wall, and around the two comers of the backstep.

The corresponding mesh with 3 levels of h-refinement is shown in Fig. 7.90, and a 3D

view of the density is presented in Fig. 7.91. Large gradients of the solution occur near

the wall both upstream and downstream of the backstep. For the upstream portion of the

computational domain there are approximately 5 layers of linear elements in the boundary

layer which are probably adequate to roughly resolve the flow features therein. In the

downstream portion of the computational mesh, however, there are only approximately two

layers of linear elements which are undoubtedly insufficient to capture the heating rates and

other fine scale phenomena.

To adequately resolve the downstream portion of the mesh we applied a uniform h-
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refinement to four layres of elements near the wall in this region to arrive at the mesh

(referred to as M3-mesh) as shown in Fig. 7.92. On this mesh we continued the solution

process with a time-step size corresponding approximately to CFL - 5. The resulting

pressure contours on the entire mesh and the temperature contours in the backstep and

downstream regions are shown shown in Figs. 7.93 and 7.94, respectively. From these plots

one can observe the overall patterns of the leading edge shock, the expansion fan at the corner

of the step, the reattachment shock downstream of the step, and the boundary layers near

the wall. The density and heat flux coefficient along the wall downstream of the backstep

are also profiled in Figs. 7.95 and 7.96, respectively.

From this point we continued the solution process along two different but parallel paths

to investigate the effectiveness of h-adaptation versus p-enrichment procedures. The first

approach consisted of applying the h-refinement/unrefinement algorithm to the M3-mesh

using the element residual error estimate scheme presented in Sec. 4.1 as the adaptation

driver. This adaptive pass resulted in the refinement of several elements in the following

regions: the leading edge, the boundary layers near the wall upstream and downstream of

the step, the corner of the step, and the reattachment shock zone. The resulting h-adapted

mesh (referred to as M4H-mesh) which consists of 9700 linear elements and 9633 degrees of

freedom is shown in Fig. 7.97. After continuing to march the solution for approximately 6

seconds of real time, the solution reached steady-state on the new mesh. The corresponding

pressure contours, temperature contours, density profile, and heat flux coefficient are shown

in Figs. 7.98 to 7.101. As expected, the enhanced mesh provides a better resolution of the

flow variables in the reattachment shock and boundary layer regions than those obtained on

the M3-mesh.

The second approach consisted of using the p-enrichment procedure proposed in Sec. 4.2

to adapt the mesh. Based on the solution obtained on the M3-mesh, the mesh was first

adaptively h-unrefined (as in the M4H-mesh) to remove excess degrees of freedom. Then,

for the elements with errors larger than the user specified threshold value (the same as the one

used for the M4H-mesh), we applied the adaptive directional p-enrichment procedure. The

directional adaptation indicators were calculated based on the derivatives of the solution,

Eq. (4.42), and the values of bl and b_ for selecting the enrichment directions were set to 0.3

and 0.7, respectively. The enriched mesh (referred to as M4P-mesh) is shown in Fig. 7.102.

Figs. 7.103 and 7.104 show blowups of the mesh around the corner of the step and along

the wall downstream of the step, respectively. Notice that the M4P-mesh consists of onJy

7774 degrees of freedom, which is almost 2000 less than the M4H-rnesh. After marching

the solution for 6 seconds of real time on this mesh, the corresponding pressure contours,

temperature contours, density profile, and heat flux coefficient were extraA:ted as shown in

Figs. 7.105 to 7.108.

Qualitatively, the p-enriched M4P-mesh showed a similar overall improvement in the
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solution over M3-mesh as the h-refined M4H-mesh did. The density profiles along the wall

downstream the step of M4H-mesh and M4P-mesh appear to be virtually the same. The one

significant difference in these two results appears in the prediction of heat flux coefficients

which shows about a 20 to 30 percent variation. Since both cases predicted the same location

of maximum heat transfer, we believe that the descripency of wall heat transfer rate in the h_

adapted mesh is caused by the still insufficient mesh clustering in the direction normal to the

boundary layer near the wall. Based on our experience in solving the other two benchmark

problems (the Holden's problem and the blunt body with impinging shock problem), where

the heat transfer rates were always underpredicted on h-meshes, we tend to conclude that

the p-enriched mesh in the boundary layer region is providing a more effective use of degrees

of freedom than h-refined mesh.

It should be noted that for this benchmark problem the experimental data presented in

Ref. [17] do not provide enough detailed information to compare our numerical results with.

Furthermore, unlike the other reference (e.g. [19]) where real gas effects were taken into

account, our assumption of perfect gas at "r = 1.4 may also make the comparison between

numerical and experiment data difficult at this time. Note thar the real gas effect will be

considered in the next year of this project.
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Figure 7.89: Rearward facing step and initial mesh.
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Figure 7.90: Adapted mesh with 3 levels of h-refinement.
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Figure 7.91: 3D view of density on adapted mesh.
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Figure 7.92: Adapted mesh with uniform h-refinement near the wall downstream of the

backstep (M3-mesh).
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Figure 7.93: Pressure contours, M3-mesh.
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Figure 7.0-1: Temperature contours in the backstep region, M3-mesh.
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Figure 7.95: Density profile along the wall downstream of the backstep, M3-mesh.
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Figure 7.96: Heat flux coefficient profile along the wall downstream of the backstep, M3-mesh.
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Figure 7.97: The final h-adapted mesh (M4H-mesh).
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Figure 7.9S: Pressure contours, M4H-mesh.
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Figure 7.99: Temperature contours in the backstep region, M4H-mesh.
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Figure 7.100: Density profile along the wall downstream of the backstep, M4H-mesh.
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Figure 7.101: Heat flux coefficient profile along the wall downstream of the backstep,

M4H-mesh.
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Figure 7.102: The final p-adapted mesh (M4P-mesh).

258



PROJECT: stpl_ie - MESH - PI-1LOW-C_I

I

1

.//

//.

:'./i /1

.... i i

i

I, i _

2 3 4 5 6 7 8

D.O.F=7774

SET=CO_E_

Figure 7.103: Blowup of M4P-mesh around the top corner of the backstep.
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Figure 7.104: Blowup of M4P-mesh near the wall downstream of backstep.
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Figure 7.105: Pressure contours, M4P-mesh.
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Figure 7.106: Temperature contours in the backstep region, M4P-mesh.
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Figure 7.107: Density profile along the wall downstream of the backstep, M4P-mesh.
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Figure 7.108: Heat flux coefficient profile aJong the wall downstream of the backstep,
M4P-mesh.
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Example I_: Double Swept Wedge Corner Flow Problem, M = 3

During the last year of the project, we have also initiated the solution of a three-dimensional

benchmark problem, which involves modeling of the invicid flow past a wedge consisting

of two planes inclined at different angles to the direction of the flow. The geometry of

the problem is rather simple and is shown in Fig. 7.109. Due to plannar symmetry of

this geometry the problem was solved only in one half of the computational domain with

appropriate symmetry boundary conditions.

Up to date, we have only performed an initial solution of this problem on a rather coarse

mesh. The corresponding solution, contours of density, and an h-adaptive mesh of linear

elements are presented in Fig. 7.110. The flow, as expected is chara_=terized by a skew shock

which leaves the computational domain without any reflexions. Obviously, the results are

far from converged on such a coarse mesh, however, the general shock structure and other

features of the flow appear to be developing correctly. Further computations for this and

other three-dimensional problems will be performed in the next year of the project, after

completion of development of efficient three-dimensional implicit/explicit algorithms.

265



/

/

/

/

/

Z

/

/

/

_lane of svmme,'-;'v

/

/I

/

/

/

/

I

I

I

I
/

=3

Y

X

/

V

/

/

/

/

/

/

/

/

/

/

Figure 7.109: Double swept wedge, geometry and f_-field conditions.

266



PROJECT: deck3d_r X DISPLACEMENTS

3.15

2.55

1.95

1.35

0.75

m

m

m

m

k

m

MIN=0.8585788

MAX=3.131479. _

Figure 7.110: Double swept wedge, M = 3, density contours and h-adapted mesh of linear
elements.

267



8 Phase II Project Summary and Future Directions

The computational results obtained for the various test cases and the theoretical advances

made in the area of adaptive finite element methods over the past four years has been

quite encouraging. They indicate that the h-p finite element method is not only a feasible

approach for solving hypersonic flows but when combined with an implicit/explicit solution

methodology provides an optimal framework for systematically changing the structure of the

computational mesh to provide highly accurate numerical results with a minimal number of

degrees of freedom and at minimum computational cost.

The technical efforts over the past year have focused on two topics which are specifically

related to the overall performance of the flow solver. The first of these issues is that of

directionally-dependent error estimation schemes which in general focused on an automated

procedure for choosing an appropriate direction for p-enrichment. The algorithm selected

herein uses a residual error estimate in conjunction with gradients of the residual error esti-

mator or gradients of the solution (either of which may be selected by the user.) The residual

error estimate itself is used to identify elements of the computational domain with relatively

high errors. Among the group of elements with high errors a directional pointer, based on

the gradients of a specified quantity, is obtained which indicated an optimal direction (or di-

rections) in the master element for p-enrichment. Several numerical results have shown that

the algorithm in general selects directions for enrichment that are normal to boundary layers

and/or normal to shocks. In regions where point types of singularities exist, the indicator

tends to select isotropic types of refinement.

The second major topic addressed over the past year, which is related to the overall

performance of the flow solver, is that of implicit/explicit solution procedures. The general

idea behind this methodology is that there is often a large diversity of stable time steps for

various parts of the computational mesh. If one uses an implicit method in regions of the

mesh with relatively severe time step restrictions and an explicit solution method in other

regions of the mesh where the stability restrictions are not as severs then an optimal balance

of computational effort is achieved within a single time step. Such an algorithm based on

a general class of implicit Taylor-Galerkin algorithms was implemented within the context

of the two-dimensional h-p flow solver. Based on the results of several test problems which

employed this algorithm, an average computational savings of about 25 percent was achieved

when compared with fully explicit algorithm and about 60 percent when compared with fully

implicit algorithm used previously. Note that higher computational savings were obtained

on problems with larger variations in the mesh size (see Section 7 for specific details).

The results obtained over the past year for the test problems and the benchmark problems

in general indicate that the implicit/expllcit methodology is a key component of an emcient
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solution process. It provides a second level of optimization whereby not only an optimal mesh

is used in the solution sequence but also an optimal time stepping procedure is employed.

The proposed next phase of the effort will focus on extending the implicit/explicit solver

methodology and the directional error estimation strategies to the three dimensional case.

Based on our results over the past year the effort should be highly successful and may even

provide more computational savings than in the two dimensional case.
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Appendix

A Performance Issues

This appendix contains a summary of the work performed at the Computational Mechanics

Company, Inc. in the areas of iterativesolutiontechniques for the h-p finiteelement method

and staticcondensation for high order spectralelements. The goal of these studies was to

improve the computational efficiencyof the h-p finiteelement method through improved

element conditioning and reduction of element storage requirements. Funding for thiswork

was provided through NASA, the Department of Defense, and privatefunding, and was not

a part of the research and development effortconducted as part of thisproject. The results,

however, axe relatedto thisproject and are included here for completeness.

A.1 Iterative Methods for the h-p Finite Element Method

This section presents some numerical studies on the performance of iterative solvers imple-

mented in the h-p finite element environment. In particular, a study of the GMRES algorithm

combined with various versions of the block Jacobi preconditioners was performed. This iter-

ative solver is used to solve nonsymmetric systems of linear equations occurring in the finite

element analysis of compressible and incompressible flows, as well as in certain problems in

solid mechanics.

The most difficult issues in the iterative solution of these systems is related to the defini-

tion and implementation of the preconditioner. A good preconditioner must satisfy several

somewhat contradictory requirements, in particular:

• It should improve the conditioning of the system to be solved.

• It must precondition out all the penalty terms used to enforce the boundary conditions

and other constraints. This is because extremely large eigenvalues introduced by the

penalty terms ruin the convergence of the GMRES accelerator.

• The submatrices inverted in the process of preconditioning should be relatively small

to minimize the computational cost of preconditioning.

In order to reasonably compromise the above criteria, we have studied a few different pre-

conditioners of the block Jacobi type. These preconditioners were based on the concept of a

"patch," which is explained further in this section.

The following subsections discuss the basic algorithm, preconditioning, and numerical

studies on the performance of the GMRES method.
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A.1.1 Basic Description of the Iterative Method

GMRES isa method for solvingnon-symmetric linearsystems of equations, as described in

[23].The following isa briefdescriptionof the method:

Consider the system of linearequations:

Ax = l

The algorithm of the truncated/restarted GMRES method consistsof the followingsteps:

I. Start:

Choose the initialguess x0

Compute the search direction:

normalize:

ro = f - Axo

I"o

2. Loop through the Gramm-Schmidt algorithm to calculate m Arnoldi vectors spanning

the Krylov subspace.

This is done by the iterative procedure:

j = 1,2...m

hi# = (Avj,vl) ; i=l,2...j

vj+l = Av_ -- E hijvi

iffil

h#+1.#= I1_#+_11

_+1
vj+1 =

hy+_j

3. Form the approximate solution

Zm -- XO "+ Vmym

where y,_ minimizesliB,-_yll, y e R _ (see[23]fordetails).
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4. Restart:

Compute r,_ = f - Ax,.; if the residual is sufficiently small, then stop

else compute:

and go to 2.

Z 0 = Z m

I)1

_Tn

A.I.2 Separating a Preconditioner ]Prom an Accelerator

The GMRES algorithm isused to solvea preconditioned system of equations:

D-I(Kx-I)--O

The idea of using a preconditioner is to replace the original system of equations Kx - f = 0

by the new one, as above, with the matrix D-]K characterized by a much lower condition

number than that of K.

The preconditioner D can be constructed from any so-called "basic iterative method" as

follows:

Given a basic iterative method for solving Kx - f - O:

xn+l = Gxn q- k

where G, k satisfy the consistency condition: (G - I)x + k = 0 is equivalent to Kx = f. We

introduce D such that the above formula becomes:

D -1 dk]z.+a = [-(K - D)x,_ +

Therefore G = -D-I(K - D) --+ D -1 = (I - G)K -a. In many situations, even when the

basic iterative method does not converge, it can serve as a good preeonditioner (such as the

• Jacobi algorithm applied to the m_s matrix in three dimensions).

Solving the preconditioned system of equations D -I(Kx - f) = 0 with an algorithm like

GMRES requiresperforming the followingoperations:

y : = D-IKz

r : = D-I(-Kz+I)
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From the definition of D we find that instead of explicitly preconditioning the matrix K by

D -_, one can perform one step of the basic method to compute:

y = x,,-z,+l with/=0

r = x.-x_+a with the actualf

This means that the "basic iterative method _ x,+l = Gx, + k can be quite independent from

the accelerator GMRES and the above operations can be performed just by calling from the

GMRES a "basic iterative solver," block Jacobi or Gauss-Seidel in our case.

A.1.3 Patch Definition

The solver, in particular the block Jacobi preconditioner, uses a block of stiffness matrices

which are associated with patches of elements. A patch is the assembly of nodes associated

with a node being preconditioned. The block inverted in D -a includes all the degrees of

freedom nodes included in the patch. Three definitions of patches have been investigated:

• patches associated with global linear nodes,

• patches associated by single nodes, and

• a combination of (i) corner nodes on the boundary and (ii) interior nodes.

The following is a brief description of each of the patch definitions:

l* Patches associated with global linear nodes consist of all nodes connected with the

central node through the edges of dements. An example of a patch 1 is presented in

Fig. A.1, where:

• = patch node

x = activated node

.

3.

Patches associated with single nodes (Fig. A.2). An active node is the patch node.

Version 3 combines patch 1 for boundary nodes and patch 2 for interior nodes. An

example of this type of patch is presented in Fig. A.3 where • = patch node and z =

activated node.

Patches of the first kind provide a quite powerful preconditioning. Its major drawback

is the large size of the patch stiffness matrix, especially for high p and three-dimensional

elements.
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• = patch node

x - activated node

× ×

ml •

× ×

Figure A.I: Patch type 1.

Figure A.2: Patch type 2.

O

Figure A.3: Patch type 3. (a) Boundary Node. (b) Interior Node.
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Patches of the second kind introduce small stiffness matrices. It is, however, not very ef-

fective, as it does not precondition out the penalty terms used to enforce boundary conditions

for higher orders of approximation.

Patches of the third kind combine smaller patches on the interior and larger patches on

the corner nodes of the boundary. It does precondition against the penalty terms on the

boundary, however, it is not as effective as patches of the first kind. Note that for linear

elements, patches of the first, second, and third kind all produce the same results.

A.1.4 Numerical Results

In this section, some sample results are presented from our study on the performance of

iterative methods (i.e., GMRES accelerator and block Jacobi preconditioner). This perfor-

mance study consists of a convergence check and a timing study where a comparison with a

direct frontal solver is made and also the effects of using different kinds of patches is studied.

The test problems considered range in complexity from a simple L2 projection to problems

in fluid mechanics (both incompressible and compressible).

:Example 1. L2 Projection

'This problem is a two-equatlon L2 projection case: x 2 +//2 = 1.0 on a square domain. It

is the simplest of the test cases and is used to verify the basic performance of the iterative

solver. The mesh consists of second order polynomial element shape functions. There are 4

elements and 2,5 degrees of freedom. An example of the mesh is shown in Fig. A.4.

From Table A.1 it can be seen that only the iterative solver using patches of the first

kind converges. It takes 2.5 times longer to converge as compared to the frontal solver. This

is not a surprising result, however, because for small patches, direct solvers usually perform

better than iterative solvers.

Example 2. Incompressible Fluid Mechanics

Here we present the timing results for a two-dimensional driven cavity flow. The geometry

and boundary conditions of the problem are simple and are very well known. For the case

under consideration, the flow field moves in the positive x-direction and the Reynolds number

is 1.0. The mesh consists of second order polynomial element shape functions for the velocity

field and first order polynomial element shape functions for the pressure field. There are 64

elements and 289 degrees of freedom per unknown. An example of the mesh is presented in

Fig. A.5.
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Figure A.4: Mesh for the L2 projection.

ERROR ERROR
_OLVER TIME

MIN MAX

FRONTAL 0.32; 597 0.0 2.0

3MRES P= I 0.797104 0.0 2.0

P=2 6_25 -_ -0.03603 1.97801 t

P=3 2.8510 -0.03006 1.718309

Table A.I: Timing results for L2-projection.
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Figure A.5: Driven cavity mesh.

ER,qOR ERRCR
50L',/E:R TIME

_IN I'I,A,.X

FRONTAL 5 _ 52617 -0.Z,_7012 0.Gzz/'071

6P'I,_ES. P= 1 98 .,_',67E -0:7872 0.378,_09]
i

P=2 2=.0.27=.0 -008106 "0-08:'i2

P=_ 502.2729-0.2_3"0_ 0.243,"9_

Table 2

Timing results for driven cavity problem.
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From Table A.2 it can be seen again that only the iterative solver with patches of the

first kind converges. It takes approximately 2.9 times longer to reach the same solution as

the frontal solver. The iterative solver with patches of the second and third kind do not

converge to the correct solution; however, the residuals of the GMRES does converge. As

expected, the iterative solver with patches of the third kind converge closer to the solution

as compared to patches of the second kind. The bad performance of preconditioners based

on patch types 2 and 3 is probably caused by a complex coupling of pressures and velocities

(through the gradient operator), which is not resolved by small patches for interior nodes.

Example 3. Compressible Fluid Mechanics

Presented here are the timing results for the standard wedge benchmark problem for inviscid

supersonic flows. For this case, a 5 degree wedge with a uniform inflow and the Mach number

of 5.0 was selected. The mesh consisted of 240 linear elements with 275 degrees of freedom

per unknown. (The mesh is presented in Fig. A.6.) The problem was run for 300 time steps.

From Table A.3 it can be seen that there is no convergence check. This is due to the

frontal solver and the iterative solver being converged to the same solution. As expected,

the iterative solver converged irrespective of the type of patch used. The iterative solver

using patches of the first kind converged the fastest followed by patches of the second kind,

and lastly, patches of the third kind. The iterative solver converged 3.9 times faster than

the frontal solver. The primary reason the iterative solver converged faster than the fronter

solver is that the mass matrix for this case is symmetric and positive definite. A symmetric

positive definite matrix has real eigenvalues and has a good conditioning number. These

characteristics of the matrix bring about a faster convergence rates for iterative solvers.

Conclusions

The iterative solver (i.e., GMRES accelerator with block Jacobi preconditioner), utilizing

patches of the first kind, converged to the same solution as the frontal solver for all cases

under consideration. The iterative solver converges slowly if the matrix is ill-conditioned or

if a penalty method applied to the boundary condition has not been preconditioned out. It

was found that the iterative solver converges more rapidly than the frontal solver for well-

conditioned matrices (the presence of mass matrix contributions on the left hand side is very

beneficial). From the present study, the use of the iterative solver with patches of the second

and third kind does not appear to be a good option.
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Figure A.6:5 degree wedge mesh.

SOLVER T1ME

,1

FRONTAL 61 19.33

GMRES P;1 1576.29

P=2 16 16.63

P=3 1721.78

Table A.3: Timing results for 5 degree wedge problem.
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A.2 Matrix Condensation

One of the side effects of using higher order finite element approximations is the extremely

large size of the element matrices that result, especially in three dimensions. For an eighth

order element in three dimensions, this corresponds to a local vector with 729 x NDOF where

NDOF is the number of solution components. Converting this into storage requirements

implies that approximately 0.5 megawords of memory are required for each component of the

solution for a single element. To reduce this large memory requirement we axe investigating

the use of static condensation to eliminate the internal degrees of freedom before the element

matrix is passed to the iterative solver. For the eighth order element mentioned above, this

corresponds to the removal of 343 x NDOF degrees of freedom at the element level which

in turn reduces storage requirements of the element matrix to less than one third of the

original size. In addition to reducing the element storage size, this technique also has the

advantage of improving the conditioning of the global system by eliminating the coupling

between nodal and central degrees of freedom and edge and central degrees of freedom.

Condensation Algorithm

Depending on which numerical algorithm is actually used in the solution of the governing

equations, the resulting forms of the element local stiffness matrix and right hand sides may

be written as

where

Ai

B, and Di

bi

[A [b]Si= Di Ci P_= c_

are stiffness matrix components representing interactions among the

internal degrees of freedom only.

are stiffness matrix components representing interactions among the

side and nodal degrees of freedom.

are stiffness matrix components representing mixed types of interac-

tions between internal and side and nodal degrees of freedom.

is the right hand side vector associated with the internal degrees of
freedom.

is the right hand side vector correspnding to all other degrees of freedom
not at the central node.

The process of condensation, or elimination of internal unknowns, entails computing the

Schurr complement:
Ci = Ci - D,A-1Bi
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and modifying the right hand side as follows

= cl - D_A'(1b_

These quantities are then normalized so that all local diagonal matrix entries are one.

C_ = E,½C_E-½ _ = E-½c_ where E, = diag(_)

Using these element matrices, a global system of the following form is obtained which no

longer contains the internal degrees of freedom,

._ =

where

$=
i i

and &i is a vector of unknowns associated with the side and nodal degrees of freedom.

The final step is the calculation of the internal unknowns a;. These are computed using

&_ by solving the local systems

Matrix Operations and Array Sizes

To solve a problem of q equations on art x n mesh using uniform p order elements, the size

of the global stiffness matrix is:

where (n + 1) 2 represents the degrees of freedom associated with the combinations of the

corners, 2n(rt + 1)(p- 1) represents the degrees of freedom associated with the combinations

of the edges, n_(p - 1) _ represents the degrees of freedom associated with the center, and q

is the number of equations.

For an 8 × 8 mesh with fourth order elements and two equations, one solves a system of

2178 equations. With condensation, this system is reduced to r_2 inversions of [(p- 1) 2 × q]_

matrices and to solving a system of [(n + 1) 2 + 2n(rt + 1)(p - 1)] × q equations. For the

sample case, this is 64 (18 × 18) matrices to invert which is equivalent to solving a system

of 513 equations. Locally it reduces the stiffness matrices from (p + 1) 2 × q to 4 pq, which

is significant for high p. It is even more significant in three dimensions when it goes from

(p + 1)3 x q to (6p 2 + 2)q.

Preliminary results using the static condensation procedure for L2 projections has shown

a slight increase in the converge rate which is most probably due to improved conditioning

and up to 20 percent savings in computational time for larger p.
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